【24h】

Developing Super-Paramagnetic Nanoparticles for Central Nervous System Axon Regeneration

机译:开发用于中枢神经系统轴突再生的超顺磁性纳米粒子。

获取原文
获取原文并翻译 | 示例

摘要

Neurons in the central nervous system (CNS) fail to regenerate their axons after injury or in degenerative disease, and stimulating regenerative growth remains a major goal of neuroscience. Mechanical tension plays a key role in stimulating axon growth in vitro and in vivo and might be used to enhance regeneration. Simply applying a tensile force to a neuron or an axon can stimulate neurite initiation or axon elongation. We are exploring novel nanotechnology-based approaches by which magnetic nanoparticles (MNPs) could be used to generate tensile forces and manipulate axons to elongate, to overcome inhibitory substrates, and to enhance the trophic signaling of axon growth. We have investigated how MNPs interact with optic nerve and spinal cord tissue in vivo and CNS neurons in vitro. We asked whether these nanoparticles can be incorporated into axons and cells. In vivo, MNPs were localized to the site of injection with little to no particle-specific toxicity detected. In vitro, we found MNP endocytosis by embryonic and postnatal retinal ganglion cells and embryonic hippocampal cells. Ongoing experiments are directed at identifying the subcellular localization of the MNPs, functionalizing MNPs for optimized binding to axons, and then, using magnetic fields to exert forces on neuronal growth cones in vitro and in vivo.
机译:中枢神经系统(CNS)中的神经元在受伤后或发生退行性疾病后无法再生其轴突,而刺激再生生长仍然是神经科学的主要目标。机械张力在体外和体内刺激轴突生长中起关键作用,可用于增强再生。只需向神经元或轴突施加张力即可刺激神经突的发生或轴突伸长。我们正在探索基于纳米技术的新方法,通过该方法,磁性纳米颗粒(MNP)可用于产生张力并操纵轴突以延长,克服抑制性底物并增强轴突生长的营养信号。我们已经研究了MNP如何在体内与视神经和脊髓组织以及体外与CNS神经元相互作用。我们问这些纳米颗粒是否可以掺入轴突和细胞中。在体内,MNPs定位于注射部位,几乎没有检测到颗粒特异性毒性。在体外,我们发现胚胎和出生后的视网膜神经节细胞和胚胎海马细胞都具有MNP内吞作用。正在进行的实验旨在鉴定MNP的亚细胞定位,功能化MNP以优化与轴突的结合,然后利用磁场在体外和体内对神经元生长锥施加力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号