首页> 外文会议>Nanowires and nanotubes - synthesis, properties, devices and energy applications of one-dimensional materials >Electrochemical Performance and Safety of Lithium Ion Battery Anodes Incorporating Single Wall Carbon Nanotubes
【24h】

Electrochemical Performance and Safety of Lithium Ion Battery Anodes Incorporating Single Wall Carbon Nanotubes

机译:掺入单壁碳纳米管的锂离子电池阳极的电化学性能和安全性

获取原文
获取原文并翻译 | 示例

摘要

Single wall carbon nanotubes (SWCNTs) were incorporated into lithium ion battery anodes as conductive additives in mesocarbon microbead (MCMB) composites and as a freestanding support for silicon active materials. In the traditional MCMB composite, 0.5% w/w SWCNTs were used to replace 0.5% w/w SuperP conductive additives. The composite with 0.5% SWCNTs had nearly three times the conductivity which leads to improved electrochemical performance at higher discharge rates with a 20% increase in capacity at greater than a C/2 rate. The thermal stability and safety was measured using differential scanning calorimetry (DSC), and a 35% reduction in exothermic energy released was measured using the highly thermally conductive SWCNTs as an additive. Alternatively, free-standing SWCNT papers were coated with increasing amounts of silicon using a low pressure chemical vapor deposition technique and a silane precursor. Increasing the amount of silicon deposited led to a significant increase in specific capacity (>2000 mAh/g) and coulombic efficiency (>90%). At the highest silicon loading, the surface area of the electrode was reduced by over an order of magnitude which leads to lower solid electrolyte interface formation and improved safety as measured by DSC.
机译:将单壁碳纳米管(SWCNT)掺入锂离子电池阳极中,作为中碳微珠(MCMB)复合材料中的导电添加剂,并作为硅活性材料的独立载体。在传统的MCMB复合材料中,使用0.5%w / w的SWCNT代替0.5%w / w的SuperP导电添加剂。具有0.5%SWCNT的复合材料的电导率几乎是其三倍,这导致在较高的放电速率下电化学性能得到改善,在大于C / 2的速率下容量增加了20%。使用差示扫描量热法(DSC)测量热稳定性和安全性,并使用高导热SWCNT作为添加剂测量释放的放热能降低35%。或者,使用低压化学气相沉积技术和硅烷前体在独立式SWCNT纸上涂覆越来越多的硅。沉积硅的量增加导致比容量(> 2000 mAh / g)和库仑效率(> 90%)显着增加。在最高的硅负载量下,电极的表面积减少了一个数量级以上,这导致较低的固体电解质界面形成,并通过DSC进行了测量,从而提高了安全性。

著录项

  • 来源
  • 会议地点 San Francisco CA(US);San Francisco CA(US);San Francisco CA(US)
  • 作者单位

    Golisano Institute for Sustainability, NanoPower Research Laboratories, 111 Lomb Memorial Drive,Rochester, NY 14623-5608, U.S.A;

    Golisano Institute for Sustainability, NanoPower Research Laboratories, 111 Lomb Memorial Drive,Rochester, NY 14623-5608, U.S.A;

    Golisano Institute for Sustainability, NanoPower Research Laboratories, 111 Lomb Memorial Drive,Rochester, NY 14623-5608, U.S.A,Chemical and Biomedical Engineering, 77 Lomb Memorial Drive, Rochester, NY 14623-5608, U.S.A;

    Golisano Institute for Sustainability, NanoPower Research Laboratories, 111 Lomb Memorial Drive,Rochester, NY 14623-5608, U.S.A;

    Chemical and Biomedical Engineering, 77 Lomb Memorial Drive, Rochester, NY 14623-5608, U.S.A;

    Golisano Institute for Sustainability, NanoPower Research Laboratories, 111 Lomb Memorial Drive,Rochester, NY 14623-5608, U.S.A;

    Golisano Institute for Sustainability, NanoPower Research Laboratories, 111 Lomb Memorial Drive,Rochester, NY 14623-5608, U.S.A,Chemical and Biomedical Engineering, 77 Lomb Memorial Drive, Rochester, NY 14623-5608, U.S.A;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号