首页> 外文会议>NATO advanced research workshop on energy and environmental challenges to security; 20071121-23; Budapest(HU) >STOCHASTIC SIMULATION AS AN INSTRUMENT FOR TECHNOLOGICAL SYSTEMS ENVIRONMENTAL PERFORMANCE
【24h】

STOCHASTIC SIMULATION AS AN INSTRUMENT FOR TECHNOLOGICAL SYSTEMS ENVIRONMENTAL PERFORMANCE

机译:随机模拟作为技术系统环境性能的一种手段

获取原文
获取原文并翻译 | 示例

摘要

The ecological footprint of rapidly growing technological systems becomes excessively high compared to the limited carrying capacity of the global eco-system. Decoupling industrial output from energy consumption challenges the post-Brundtland society to shift towards a new kind of technological progress. Stochastic simulation could serve as a powerful instrument for this by helping to improve overall performance through design and management of technological systems, achieving win-win results for the common benefits of entrepreneurs and the environment, and mitigating the ecological footprint of technological systems. The levels of power consumption of the systems in question as well as their energy intensity of output are quite important indicators of overall performance. Using stochastic simulation we can reproduce all the details of the systems in question, including functioning, optimizing operations management, and eliminating redundant losses of operating time and therefore losses of energy and material flows. To describe the real processes involved in the running of technological systems we use stochastic discreet models (Shannon, 1973; Carroll, 1985; Taha, 1997). The duration of operations is depicted by the Erlangian model, which describes a broad continuum of cases: from pure stochastic (Erlangian parameter or order of distribution k = 1) to deterministic (k = ∞). Using data about a mean operations duration and order of Erlangian distribution k collected from real transfer lines, we developed stochastic discreet models, which quite precisely describe real processes (accordingly to chi-square criteria) and, applying the method of inverse functions (Taha, 1997), we used these models to simulate processes of technological systems functioning with the aim of investigating and optimising their management and eliminating redundant time and energy losses (Dudyuk and Zahvoyska, 2003). Relevant examples introduced in the paper clearly illustrate the eco-efficiency of technological systems redesigning and/or proper management.
机译:与全球生态系统的有限承载能力相比,快速发展的技术系统的生态足迹变得过高。将工业产出与能源消耗脱钩,对后布兰特兰社会提出了挑战,要求其转向新的技术进步。随机模拟可以通过以下方式来作为一种有力的工具:通过设计和管理技术系统来改善整体性能,为企业家和环境的共同利益实现双赢,并减轻技术系统的生态足迹。有关系统的功耗水平及其输出的能量强度是整体性能的重要指标。使用随机仿真,我们可以重现所讨论系统的所有详细信息,包括功能,优化运营管理以及消除冗余的运行时间,从而避免能源和物料流的损失。为了描述涉及技术系统运行的实际过程,我们使用随机离散模型(Shannon,1973; Carroll,1985; Taha,1997)。运算的持续时间由Erlangian模型描绘,该模型描述了一系列广泛的情况:从纯随机(Erlangian参数或分布阶数k = 1)到确定性(k =∞)。利用从平均传输线收集的平均操作持续时间和埃尔兰分布k的顺序数据,我们开发了随机离散模型,该模型非常精确地描述了实际过程(根据卡方标准),并应用了反函数方法(塔哈, (1997年),我们使用这些模型来模拟技术系统的运行过程,以调查和优化其管理并消除多余的时间和能源损失(Dudyuk和Zahvoyska,2003年)。本文介绍的相关示例清楚地说明了技术系统重新设计和/或适当管理的生态效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号