【24h】

SINGLE-PHASE FORCED CONVECTION IN MICROCHANNELS A State-of-the-Art Review

机译:微通道中的单相强制对流研究进展

获取原文
获取原文并翻译 | 示例

摘要

With the recent advances in microfabrication, various devices having dimensions of the order of microns such as, among others, micro-heat sinks, micro-biochips, micro-reactors for modification and separation of biological cells, micro-motors, micro-valves and micro-fuel cells have been developed. These found their applications in microelectronics, microscale sensing and measurement, spacecraft thermal control, biotechnology, microelectromechan-ical systems (MEMS), as well as in scientific investigations. The trend of miniaturization, especially in computer technology, has significantly increased the problems associated with overheating of integrated circuits (ICs). With existing heat flux levels exceeding 100 W/cm~2, new thermal packaging systems incorporating effective thermal control techniques have become mandatory for such applications. The recent developments in thermal packaging have been discussed by Bar-Cohen, and experimental, as well as analytical methods have been reported by a number of researchers in Cooling of Electronic Systems, edited by Kakac. et al.. The need for the development of efficient and effective cooling techniques for microchips has initiated extensive research interest in microchannel heat transfer. MicroChannel heat sinks have been recommended to be the ultimate solution for removing high rates of heat in microscale systems. A microchannel heat sink is a structure with many microscale channels machined on the electrically inactive face of the microchip. The main advantage of microchannel heat sinks is their extremely high heat transfer area per unit volume. Since microchannels of noncircular cross sections are usually integrated in silicon-base microchannel heat sinks, it is important to know the fluid flow and heat transfer characteristics in these channels for better design of the systems. Moreover, the key design parameters like the pumping pressure for the coolant fluid, fluid flow rate, fluid and channel wall temperatures, channel hydraulic diameter and the number of channels in the sink have further to be optimized to make the system efficient and economical.
机译:随着微细加工的最新进展,具有微米级尺寸的各种装置,例如微散热器,微生物芯片,用于修饰和分离生物细胞的微反应器,微马达,微阀和开发了微型燃料电池。它们在微电子学,微尺度传感和测量,航天器热控制,生物技术,微机电系统(MEMS)以及科学研究中得到了应用。小型化的趋势,特别是在计算机技术中,已大大增加了与集成电路(IC)过热相关的问题。随着现有的热通量水平超过100 W / cm〜2,结合有效的热控制技术的新型热包装系统已成为此类应用的必需。 Bar-Cohen讨论了热包装的最新发展,Kakac编辑的《电子系统冷却》的许多研究人员报道了实验方法和分析方法。对有效和有效的微芯片冷却技术的发展的需求引发了对微通道传热的广泛研究兴趣。建议将微通道散热器作为消除微型系统中高热量的最终解决方案。微通道散热器是在微芯片的非电活性面上加工了许多微通道的结构。微通道散热器的主要优点是每单位体积的传热面积极高。由于非圆形横截面的微通道通常集成在硅基微通道散热器中,因此重要的是要了解这些通道中的流体流动和传热特性,以便更好地设计系统。此外,关键设计参数(如冷却液的泵送压力,流体流速,流体和通道壁温度,通道液压直径和水槽中通道的数量)必须进一步优化,以使系统高效且经济。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号