【24h】

SPATIAL SOLITONS IN MODULATED MAGNETOOPTIC WAVEGUIDES

机译:调制磁光波导中的空间孤子

获取原文
获取原文并翻译 | 示例

摘要

This chapter addresses the combination of linear magnetooptics and intrinsic optical nonlinearity, to make nonlinear waveguide systems that permit solitary wave control and a possible new range of devices. Such applications are simple in concept ― as, indeed, are all schemes ever proposed for realistic optical switching ― yet they are within the currently available material technology. A discussion is presented of a magnetooptic configuration in a standard planar format. The latter is the building block of planar technology photonics because the objective is an all-optics 'chip-level' format that will paiticipate in, and control all-optical processing operations in the future. The way forward is to use spatial soliton beams in which the diffraction length is the operative length scale. The reason for this is that diffraction operates over only the order of mm and sc it fits the 'chip' design very well. Once solitons are created, controlling their dynamics becomes an important issue so magnetooptics is put forward here as a very attractive option. Building a planar structure upon a magnetooptic substrate leads to a number of possibilities, but for the moment, we choose TM waves, within what is called the transverse magnetooptic configuration. The new idea is to use a transversely varying magnetooptic parameter, created by deploying electrode structures. These electrode structures, will, in practice, be narrow strips of metal, which can be created in any desired pattern. Even the simplest of them gives an impressive degree of control over the soliton dynamics. An interesting example is presented to illustrate the capability of this area but added or buried, electrode structures will become a feature of the all-optical chip technology of the future. There is a lot of work to be done! It will give a real possibility of manipulating the solitons in any way that is desired. The realisation of this aspiration is assured by the availability of magnetooptic materials through the global technology that is driving the linear magnetooptic field.
机译:本章介绍了线性磁光与固有光学非线性的结合,以制造允许隔离波控制和可能的新型器件的非线性波导系统。这样的应用在概念上很简单-的确如此,实际上,所有方案都已提出用于现实的光交换-但它们仍在当前可用的材料技术之内。讨论了标准平面形式的磁光结构。后者是平面技术光子学的基本组成部分,因为目标是全光学“芯片级”格式,它将在未来成为主流,并控制全光学处理操作。前进的道路是使用空间孤子束,其中衍射长度是有效长度尺度。这是因为衍射仅在毫米级上起作用,并且sc非常适合“芯片”设计。一旦创建了孤子,控制其动力学就成为一个重要的问题,因此在这里提出磁光技术是一个非常有吸引力的选择。在磁光衬底上建立平面结构会带来多种可能性,但是目前,我们选择TM波,即所谓的横向磁光配置。新的想法是使用通过部署电极结构而产生的横向变化的磁光参数。在实践中,这些电极结构将是金属的窄条,其可以以任何期望的图案形成。即使是最简单的它们,也可以对孤子动力学提供令人印象深刻的控制。提出了一个有趣的例子来说明该区域的功能,但是增加或掩埋电极结构将成为未来全光芯片技术的功能。有很多工作要做!它将以任何期望的方式提供操纵孤子的真实可能性。通过驱动线性磁光场的全球技术,磁光材料的可用性确保了这一愿望的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号