首页> 外文会议>The Nature of Light: What Are Photons?; Proceedings of SPIE-The International Society for Optical Engineering; vol.6664 >Multi-photon entanglement: From quantum curiosity to quantum computing and quantum repeaters
【24h】

Multi-photon entanglement: From quantum curiosity to quantum computing and quantum repeaters

机译:多光子纠缠:从量子好奇心到量子计算和量子中继器

获取原文
获取原文并翻译 | 示例

摘要

In the emerging field of quantum information technology the two basic subfields are quantum communication and quantum computation. Photonic qubits are considered as most promising information carriers for this new technology due to the immense advantage of suffering negligible decoherence. Additionally, the very small photon-photon interactions can be replaced by inducing effective nonlinearities via measurements which allow for the implementation of crucial two-qubit gate operations. Although the spontaneous parametric down-conversion gives access to the generation of highly entangled few-photon states, such as four-qubit cluster states which allow to demonstrate the new concept of the one-way quantum computer, its applicability is highly limited due to the poor scaling of the simultaneous emission of more than one-entangled photon pair. Therefore of particular interest is the reversible mapping of qubits from photon states to atomic states. This might allow the implementation of photonic quantum repeaters for long-distance quantum communication or the generation of arbitrary multi-photon states as required for linear-optics quantum computing. Thus for the realization of such a quantum network several approaches for achieving the required quantum control between matter and photons have been studied during the past few years. Recent experiments demonstrating the generation of narrow-bandwidth single photons using a room-temperature ensemble of ~(87)Rb atoms and electromagnetically induced transparency should emphasize the progress towards such a quantum network.
机译:在新兴的量子信息技术领域,两个基本的子领域是量子通信和量子计算。由于遭受微不足道的退相干的巨大优势,光子量子位被认为是这项新技术最有希望的信息载体。另外,非常小的光子-光子相互作用可以通过测量引起有效的非线性来代替,这些测量允许执行关键的二量子位门运算。尽管自发的参数下转换可以访问高度纠缠的少数光子状态,例如可以证明单向量子计算机这一新概念的四量子位簇状态,但由于多于一个纠缠光子对同时发射的缩放比例不佳。因此,特别令人感兴趣的是量子位从光子状态到原子状态的可逆映射。这可能允许实现用于长距离量子通信的光子量子中继器,或者生成线性光学量子计算所需的任意多光子状态。因此,为了实现这样的量子网络,在过去的几年中,已经研究了几种用于实现物质和光子之间所需的量子控制的方法。最近的实验表明,使用〜(87)Rb原子的室温整体和电磁感应的透明性来产生窄带宽单光子,应该强调朝着这种量子网络的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号