【24h】

III-V Quantum Dot Enhanced Photovoltaic Devices

机译:III-V量子点增强型光伏器件

获取原文
获取原文并翻译 | 示例

摘要

State of the art photovoltaics exhibiting conversion efficiency in excess of 30% (1-sun) utilize epitaxially grown multijunction III-V materials. Increasing photovoltaic efficiency is critically important to the space power, and more recently, the terrestrial concentrator PV communitiesrnThe use of nanostructured materials within photovoltaic devices can enable improved efficiency, potentially in excess of the Shockley-Queisser limit. The addition of nanostructures such as quantum dots (QDs) to photovoltaic devices allows one to extend the absorption spectrum of the solar cell and "tune" the bandgap to the spectral conditions. Multi-junction (MJ) solar cells would benefit from the additional short-circuit current within the middle current-limiting (In)GaAs cell via QD spectral tuning. While QD tuning is a potentially direct approach to increased efficiency of MJ solar cells, it has been reported that significant improvements can be achieved using QDs to form an intermediate band within the bandgap of a suitable matrix.rnWe will discuss the potential for QD photovoltaic devices and examine the challenges associated with multi-junction device growth with the inclusion of quantum dot arrays. GaAs p-i-n solar cells, with and without InAs QD superlattices are used to demonstrate the potential benefits of QDs. The unique challenges associated with the characterization of this type of device will also be presented. Using strain-balanced Stranski-Krastanov QD formation, we have demonstrated sub-gap photon collection and increased current in QD-enhanced GaAs solar cells containing up to 100 periods. Finally, we will discuss the opportunities that these devices hold for high photovoltaic conversion efficiency.
机译:表现出超过30%(1-sun)转换效率的先进光伏技术利用外延生长的多结III-V材料。光伏效率的提高对空间发电至关重要,最近,地面聚光器光伏社区在光伏器件中使用纳米结构材料可以提高效率,有可能超过肖克利-奎塞尔极限。向光生伏打器件中添加纳米结构,例如量子点(QDs),可以扩展太阳能电池的吸收光谱并将能带隙“调节”到光谱条件。多结(MJ)太阳能电池将通过QD频谱调整而受益于中间限流(In)GaAs电池内的额外短路电流。虽然QD调谐是提高MJ太阳能电池效率的潜在直接方法,但据报道,使用QD可以在合适基质的带隙内形成中间带可以实现显着改善.rn我们将讨论QD光伏器件的潜力并研究包含量子点阵列的多结器件增长所带来的挑战。具有和不具有InAs QD超晶格的GaAs p-i-n太阳能电池用于证明QD的潜在优势。还将介绍与这类设备的特性相关的独特挑战。利用应变平衡的Stranski-Krastanov QD形成,我们已经证明了亚间隙光子收集和QD增强的GaAs太阳能电池(最多包含100个周期)中的电流增加。最后,我们将讨论这些设备为实现高光电转换效率所带来的机遇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号