首页> 外文会议>Offshore Technology Conference;ExxonMobil;Aseeder;Schlumberger >Interaction between Proppant Packing, Reservoir Depletion, and Fluid Flow in Hydraulic Fractures
【24h】

Interaction between Proppant Packing, Reservoir Depletion, and Fluid Flow in Hydraulic Fractures

机译:水力压裂裂缝中支撑剂填充,储层枯竭和流体流动之间的相互作用

获取原文
获取原文并翻译 | 示例

摘要

Understanding of proppant transport and deposition patterns in a hydraulic fracture is vital for effectivernand economical production of petroleum hydrocarbons. In this research, a numerical modeling approach,rncombining Particle Flow Code (PFC) with single-/multiphase lattice Boltzmann (LB) simulation, wasrnadopted to advance the understanding of the interaction between reservoir depletion, proppant particlerncompression, and single-/multiphase flow in a hydraulic fracture. PFC was used to simulate effectivernstress increase and the resultant proppant particle movement and rearrangement during the process ofrnreservoir depletion due to hydrocarbon production. The pore structure of the proppant pack was extractedrnand used as boundary conditions of the LB simulation to calculate the time-dependent permeability ofrnthe proppant pack. We first validated the PFC-LB numerical workflow, and the simulated proppant packrnpermeabilities as functions of effective stress were in good agreement with laboratory measurements.rnFurthermore, three proppant packs with the same average diameter but different diameter distributionsrnwere generated. Specifically, we used the coefficient of variation (COV) of diameter, defined as the ratiornof standard deviation of diameter to mean diameter, to characterize the heterogeneity of particle size.rnWe obtained proppant pack porosity, permeability, and fracture width reduction (compressed distance) asrnfunctions of effective stress. Under the same effective stress, a proppant pack with a higher diameter COVrnhad lower porosity and permeability and larger fracture width reduction. This was because the high diameterrnCOV gave rise to a wider diameter distribution of proppant particles; smaller particles were compressedrninto the pore space between larger particles with the increasing stress, leading to larger compressed distancernand lower porosity and permeability. Using multiphase LB simulation.
机译:理解水力压裂中支撑剂的传输和沉积方式对于有效而经济地生产石油碳氢化合物至关重要。在这项研究中,采用了一种数值建模方法,即将颗粒流代码(PFC)与单相/多相晶格Boltzmann(LB)模拟相结合,以加深对储层耗竭,支撑剂颗粒压缩与单相/多相流之间相互作用的理解。水力压裂。 PFC用于模拟有效应力的增加以及由于油气生产而导致的储层枯竭过程中支撑剂颗粒的运动和重排。提取支撑剂填充物的孔隙结构,并将其用作LB模拟的边界条件,以计算支撑剂填充物随时间的渗透率。我们首先验证了PFC-LB数值工作流程,并且模拟的支撑剂充填率作为有效应力的函数与实验室测量值非常吻合。此外,生成了三个平均直径相同但直径分布不同的支撑剂。具体而言,我们使用直径的变异系数(COV)(定义为直径与平均直径的比率标准偏差)来表征粒径的不均一性.rn我们获得了支撑剂充填的孔隙率,渗透率和裂缝宽度减小(压缩距离)有效压力的功能。在相同的有效应力下,具有较高直径COVrn的支撑剂填料的孔隙率和渗透率较低,裂缝宽度减小率较大。这是因为大直径的COV导致支撑剂颗粒的直径分布更宽;随着应力的增加,较小的颗粒被压缩到较大颗粒之间的孔隙中,从而导致较大的压缩距离和较低的孔隙率和渗透率。使用多相LB仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号