首页> 外文会议>Offshore Technology Conference;ExxonMobil;FMCTechnologies;Schlumberger >Enhanced Nozzle Inflow Control Device Development for Wall Shear Stress Minimization in High-Production Application
【24h】

Enhanced Nozzle Inflow Control Device Development for Wall Shear Stress Minimization in High-Production Application

机译:增强型喷嘴流入控制装置的开发,可最大限度地减少高产量应用中的壁切应力

获取原文
获取原文并翻译 | 示例

摘要

Inflow control devices (ICD) are a proven technology for overall production flux balance. Because theyrnrestrict flow, standard ICDs develop regions of high-fluid velocities and high-wall shear stresses. Wallrnshear stress is a tangential drag force produced by a layer of flow along a wall as a result of frictionrnbetween the fluid and the wall. Elevated production rates of oil and/or water with CO_2 or H2S increasernfluid velocities and associated wall shear experienced by ICDs potentially leading to flow-inducedrnerosion-corrosion and mechanical failure. For these environments, corrosion is enhanced by the removalrnof the passivating layer through fluid flow-induced erosion.rnBecause of the strong need for ICD completions in a high profile field project in the Middle East, anrnenhanced ICD design has been developed to withstand high production rates without creating high wallrnshear, thus reducing erosion-corrosion induced by flow. Computational fluid dynamics (CFD) was usedrnto study several ICD designs and assess the modifications necessary to enhance performance for differentrnflow rates and pressure drop conditions. Worst case scenarios were evaluated to ensure the modifiedrndesign would be suitable for the environment and meet the operator’s criteria for production.rnCFD analysis proved the enhanced adjustable nozzle ICD was an improvement over the standard ICD.rnThis modified design showed lower wall shear on the critical surfaces. Throughout the ICD designrnoptimization process, flow behavior was evaluated to minimize regions of predicted high velocity and wallrnshear. The enhanced design is commercially available in the Middle East. The modified, adjustable,rnnozzle ICD helps to condition the flow better than the standard ICD, thus reducing the wall shear stressrnaround critical parts (including perforation holes, basepipe surface, and NPT plugs). This reduction isrncrucial when dealing with required high production flow rate.rnExploring options to minimize wall shear stress on the surfaces of completion components is arnrelatively recent challenge. It is an important subject for operators attempting to avoid mechanical failuresrnand the associated recompletion costs. The present study provides a methodology to design fluid passagesrnto minimize the flow-induced erosion-corrosion experienced at high production rates as well as highrninjection rates experienced during workover operations.
机译:流入控制设备(ICD)是一种用于整体生产流量平衡的成熟技术。由于它们限制流动,因此标准ICD会形成高流体速度和高壁面剪应力的区域。壁切应力是由于流体和壁之间的摩擦而沿着壁的流动层产生的切向阻力。带有CO_2或H2S的油和/或水的生产率提高,ICD经历的流体速度和相关的壁剪切将潜在地导致流动引起的腐蚀腐蚀和机械故障。对于这些环境,通过钝化层的去除会通过流体流动引起的腐蚀来增强腐蚀。由于中东高调油田项目对ICD完井的强烈需求,已开发出增强的ICD设计以承受高生产率。不会产生高的壁面剪切力,从而减少了流动引起的腐蚀腐蚀。计算流体动力学(CFD)用于研究几种ICD设计并评估为提高不同流速和压降条件下的性能所必需的修改。对最坏的情况进行了评估,以确保改进的设计适用于环境并满足操作员的生产标准.CFD分析证明增强的可调喷嘴ICD是对标准ICD的改进.rn这种改进的设计显示了关键表面上的较低壁剪切。在整个ICD设计优化过程中,都对流动行为进行了评估,以使预测的高速区域和壁面剪切区域最小化。增强的设计在中东地区有售。改进的可调喷嘴ICD可以比标准ICD更好地调节流量,从而降低关键部件(包括穿孔,底管表面和NPT堵头)周围的壁切应力。在处理所需的高生产流量时,这种降低是至关重要的。无疑,探索选择以最小化完井组件表面的壁面剪应力的选择是最近的挑战。对于试图避免机械故障和相关的重新安装费用的操作员来说,这是一个重要的课题。本研究提供了一种设计流体通道的方法,以最小化在高生产率以及修井作业过程中所经历的高注入速率下流动引起的侵蚀腐蚀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号