【24h】

Quantitative Photoacoustic Image Reconstruction for Molecular Imaging

机译:用于分子成像的定量光声图像重建

获取原文
获取原文并翻译 | 示例

摘要

Biomedical photoacoustic imaging produces a map of the initial acoustic pressure distribution, or absorbed energy density, in tissue following a short laser pulse. Quantitative photoacoustic imaging (QPI) takes the reconstruction process one stage further to produce a map of the tissue optical coefficients. This has two important advantages. Firstly, it removes the distorting effect of the internal light distribution on image contrast. Secondly, by obtaining images at multiple wavelengths, it enables standard spectroscopic techniques to be used to quantify the concentrations of specific chromophores, for instance, oxy and deoxy haemoglobin for the measurement of blood oxygenation - applying such techniques directly to "conventionally" reconstructed absorbed energy maps is problematic due to the spectroscopic 'spatial crosstalk' effects between different tissue chromophores. As well as naturally-occurring chromophores, dye-labelled molecular markers can be used to tag specific molecules, such as cell surface receptors, enzymes or pharmaceutical agents. In QPI, a diffusion-based finite element model of light transport in scattering media, with δ-Eddington scattering coefficients, is fitted to the absorbed energy distribution to estimate the optical coefficient maps. The approach described here uses a recursive algorithm and converges quickly on the absorption coefficient distribution, when the scattering is known. By adding an area of known absorption, an unknown constant scattering coefficient may also be recovered. With optical coefficient maps estimated in this way, QPI has the potential to be a powerful tool for quantifying the concentration of molecular markers in photoacoustic molecular imaging.
机译:生物医学光声成像会在短激光脉冲后产生组织中初始声压分布或吸收的能量密度的图。定量光声成像(QPI)将重建过程进一步推进了一个阶段,以产生组织光学系数图。这有两个重要的优点。首先,它消除了内部光分布对图像对比度的扭曲影响。其次,通过获取多个波长的图像,它使标准的光谱技术能够用于量化特定生色团的浓度,例如用于测量血液氧合的血红蛋白和氧血红蛋白的浓度-将此类技术直接应用于“常规”重建的吸收能由于不同组织发色团之间的光谱“空间串扰”效应,图谱存在问题。除天然发色团外,染料标记的分子标记还可用于标记特定分子,例如细胞表面受体,酶或药物。在QPI中,将具有δ-Eddington散射系数的基于扩散的光在散射介质中传输的有限元模型拟合到吸收的能量分布中,以估计光学系数图。当散射已知时,此处描述的方法使用递归算法并在吸收系数分布上快速收敛。通过增加已知吸收的面积,还可以恢复未知的恒定散射系数。通过以这种方式估算光学系数图,QPI有望成为定量光声分子成像中分子标记物浓度的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号