首页> 外文会议>Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE >2-Dimensional optoelectronic simulation for nanostructured organic-inorganic hybrid solar cells
【24h】

2-Dimensional optoelectronic simulation for nanostructured organic-inorganic hybrid solar cells

机译:纳米结构有机-无机混合太阳能电池的二维光电模拟

获取原文

摘要

Hybrid solar cells (HSCs) based on a mixture of organic and inorganic semiconductor materials attract a lot of attention owing to the combination of desirable properties of both materials. Due to low exciton diffusion length and light harvesting issues, nanostructures are often employed in HSCs. However, most numerical models over-simplify the complicated bulk heterojunction (BHJ) into a homojunction configuration which losses insights to charge transport. Moreover, designing nanostructures to achieve both light harvesting and carrier collection is essential, but rather complicated. In this work, we develop a methodology based on two-dimensional (2D) optical and electrical simulations which are tailored for the hybrid system. The optical simulation employs a finite-difference time-domain (FDTD) technique to calculate the electromagnetic field and obtain the generation rate in the nanostructure. Next, an electrical calculation is based on a 2D self-consistent drift-diffusion and Poisson solver which uses a finite element method (FEM). As a result, our works allows the analysis of optical and electrical properties of nanostructured heterojunction semiconductor materials. The theoretical approach has been validated for P3HT/PCBM BHJ organic solar cells. In this study, hybrid structures based on Si nanowires (NWs)/ poly(3-hexylthiophene)(P3HT) are used as the hypothetical material system, where an interpenetrating network of rectangular channels consisting of SiNWs and P3HT is assumed. The simulation results show that NWs facilitates transmission and absorption of sunlight inside the photoactive layer. We then investigate the device current-voltage characteristics as a function of the recombination rate, barrier heights of anode and cathode, and structural configuration of interfaces. The theoretical approach also allows the optimization of optical and electrical properties of solar cells with embedded nanostructures or nanoparticles.
机译:基于有机和无机半导体材料混合物的混合太阳能电池(HSC)由于这两种材料的理想性能的结合而引起了广泛的关注。由于低激子扩散长度和光收集问题,HSC中经常采用纳米结构。但是,大多数数值模型将复杂的体异质结(BHJ)简化为同质结构型,从而失去了电荷传输的见识。而且,设计纳米结构以实现光收集和载流子收集是必不可少的,但是相当复杂。在这项工作中,我们开发了一种基于二维(2D)光学和电气仿真的方法,该方法是为混合系统量身定制的。光学仿真采用了时域有限差分(FDTD)技术来计算电磁场并获得纳米结构中的生成速率。接下来,基于2D自洽漂移扩散和泊松解算器的电气计算,该算子使用有限元方法(FEM)。结果,我们的工作允许分析纳米结构异质结半导体材料的光学和电学性质。理论方法已针对P3HT / PCBM BHJ有机太阳能电池进行了验证。在这项研究中,基于Si纳米线(NWs)/聚(3-己基噻吩)(P3HT)的混合结构被用作假设的材料系统,其中假设由SiNWs和P3HT组成的矩形通道互穿网络。仿真结果表明,NWs促进了光敏层内部阳光的透射和吸收。然后,我们研究器件电流-电压特性与复合率,阳极和阴极的势垒高度以及界面结构的关系。该理论方法还允许优化具有嵌入式纳米结构或纳米颗粒的太阳能电池的光学和电性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号