首页> 外文会议>Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE >Latest developments of high-efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design
【24h】

Latest developments of high-efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design

机译:高效微晶型串联硅太阳能电池的最新进展,采用了创新的基板材料并改进了电池设计

获取原文
获取原文并翻译 | 示例

摘要

We report here on the latest research developments of tandem micromorph (amorphous/ microcrystalline) silicon solar cells in our laboratory. High conversion efficiency for micromorph cells requires both a dedicated light management to keep the absorber layers as thin as possible, and optimized growth conditions of the microcrystalline silicon (μc-Si:H) material. We will show that an improved cell design based on the use of silicon oxide doped layers permits to achieve high efficiencies on substrates that are usually considered as inappropriate for μc-Si:H because of their roughness. Furthermore, recently, new front contacts based e.g. on bi-layers or Ultraviolet nanoimprint lithography were developed, leading to very promising results in micromorph solar cells. While efficiencies of 12.7% initial and 11.3% stable could be achieved with only 1.1 μm of bottom cell on a front rough Low Pressure Chemical Vapor Deposited (LPCVD) ZnO, a remarkable 12% initial was also reached on textured replica (as on the master). Emphasis is also laid in our lab on increasing the deposition rate of mc-Si:H while maintaining high quality material. This is done by reducing the interelectrode gap while working at high deposition pressure, in "powder free" processes at 40 MHz. We could observe that high pressure-low hydrogen dilution process conditions lead to dense high quality material. So far, conversion efficiencies up to 8.5% have been achieved at 1 nm/s for single junction μc-Si:H solar cells with 1.8 μm thick absorber layer. We also report a promising micromorph tandem initial efficiency of 11.9% with the μc-Si:H i-layer at 0.9 nm/s. High efficiency micromorph solar cells could thus be fabricated under conditions that are favorable to industrial, low-cost, fabrication of micromorph modules. Recent results of tandems combining original substrates and improved deposition processes suggest that stabilised efficiencies close to 13% can be - xpected in a near future.
机译:我们在这里报告了我们实验室中的串联微晶硅(非晶/微晶)硅太阳能电池的最新研究进展。微晶格电池的高转换效率既需要专用的光管理以保持吸收层尽可能薄,又需要微晶硅(μc-Si:H)材料的最佳生长条件。我们将证明,基于使用氧化硅掺杂层的改进电池设计可在通常被认为不适合μc-Si:H的基板上实现高效率,因为它们的粗糙度较高。此外,最近,基于例如在双层或紫​​外纳米压印光刻技术上的发展,导致在微晶太阳能电池中非常有希望的结果。虽然在粗糙的低压化学气相沉积(LPCVD)ZnO上仅用1.1μm的底部电池就可以实现12.7%的初始效率和11.3%的稳定度,但在纹理复制品上也达到了12%的显着初始值(如母版)。我们的实验室还着重于在保持高质量材料的同时提高mc-Si:H的沉积速率。这是通过在40 MHz的“无粉”工艺中在高沉积压力下工作时减小电极间间隙来完成的。我们可以观察到高压低氢稀释工艺条件导致了致密的高质量材料。到目前为止,对于具有1.8μm厚吸收层的单结μc-Si:H太阳能电池,在1 nm / s的条件下,转换效率已达到8.5%。我们还报告了μc-Si:H i层在0.9 nm / s时有希望的微晶体串联初始效率为11.9%。因此,可以在有利于工业,低成本,微晶型组件制造的条件下制造高效微晶型太阳能电池。结合原始衬底和改进沉积工艺的双相半导体的最新结果表明,可以在不久的将来实现接近13%的稳定效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号