首页> 外文会议>Physics, simulation, and photonic engineering of photovoltaic devices II >On energy transfer in metallically nanomodified photocells via surface plasmons in metallic nanoparticles: inclusion of nanoparticle size-effect
【24h】

On energy transfer in metallically nanomodified photocells via surface plasmons in metallic nanoparticles: inclusion of nanoparticle size-effect

机译:关于通过金属纳米粒子中的表面等离激元在金属纳米改性光电池中的能量转移:纳米粒子尺寸效应的包含

获取原文
获取原文并翻译 | 示例

摘要

The energy transfer from plasmons in metallic nano-sphere deposited on the semiconductor surface to substrate electron band-system is investigated upon the scheme of Fermi golden rule. The analysis of PV efficiency dependence with respect to the nano-sphere size for plasmon mediated channel is presented for the case of photo-diode system with metallic nano-components deposited on the photo-active surface. The trade off between PV efficiency enhancement accompanying surface plasmon dipole magnitude increase with the nano-sphere size growth versus lowering tendency due to quenching of indirect inter-band transitions in substrate semiconductor, significant for smaller radii, is demonstrated in an analytical way. Plasmons in metallic nano-sphere are described within the semiclassical random phase approximation (RPA) framework, sufficiently accurate for large nanoparticles, with radius a ~ 5 - 60 nm (for Au or Ag). Irradiation induced plasmon damping is analyzed via the Lorentz friction mechanism. The comparison with the experimental data is given supporting the formulated explanation of giant PV efficiency increase due to plasmon effect.
机译:根据费米黄金法则研究了从沉积在半导体表面的金属纳米球中的等离激元到衬底电子能带系统的能量转移。针对在光电二极管系统中将金属纳米成分沉积在光敏表面上的情况,提出了对等离激元介导的通道相对于纳米球尺寸的PV效率依赖性的分析。以分析的方式证明了,随着纳米球尺寸的增长,伴随表面等离激元偶极子量级增加的PV效率增强与由于衬底半导体中间接带间跃迁的淬灭而导致的降低趋势之间的权衡,这对于较小的半径是重要的。在半经典随机相近似(RPA)框架内描述了金属纳米球中的等离子体,对于半径为a〜5-60 nm的大型纳米粒子(对于Au或Ag),该等离子体足够精确。通过洛伦兹摩擦机理分析了辐射诱导的等离激元阻尼。给出了与实验数据的比较,以支持公式化解释由于等离激元效应而导致的巨大PV效率增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号