首页> 外文会议>Practical knowledge, worldly wisdom amp; extraordinary ingenuity >Aluminum Nitride Thin Films for High Frequency Smart Ultrasonic Sensor Systems
【24h】

Aluminum Nitride Thin Films for High Frequency Smart Ultrasonic Sensor Systems

机译:高频智能超声波传感器系统的氮化铝薄膜

获取原文
获取原文并翻译 | 示例

摘要

Introducing new materials and processes such as fiber composites into industrial applications, requires nondestructive evaluations with an increasing demand on higher resolutions, to determine structural parameters, for example fiber distribution and orientation. Ultrasonic phased array methods are some of the most frequently used nondestructive evaluation techniques for CFRP components. Due to technical reasons, structuring the PZT composite as an active element inside a transducer, the frequency (and depending resolution) of existing phased array sensors is limited to approximately 20 MHz. Higher resolutions can be achieved using scanning acoustic microscopy (SAM) with a typical frequency range between 20 MHz and 100 MHz. Exciting current SAM techniques are based on single element transducers without the potential of using phased array algorithms for angle variations. To apply the benefits of phased array techniques to the frequency range of scanning acoustic microscopy, new design concepts and sensor elements have to be developed.Aluminum nitride is a promising material for use as a piezoelectric sensor material in the considered frequency range, and it exhibits the potential for future high-frequency phased array applications. This paper presents the fundamental development of piezoelectric aluminum nitride films with a thickness of up to 10 pirn..We have investigated and optimized the deposition process of aluminum nitride thin film layers relative to their piezoelectric behavior. Consequently, we have created a system, including a specific test setup to determine the piezoelectric charge constant (d33) and the electro-acoustic behavior of the transducers. Single element transducers were deposited on silicon substrates with aluminum electrodes, using different parameters for the magnetron sputter process, i.e. pressure and bias voltage. Subsequently, we performed acoustical measurements with up to 500 MHz in the pulseecho mode and qualified the electrical and electromechanical properties. As a result, we have identified that there are two essential parameter sets for the sputtering process to obtain an excellent piezoelectric charge constant at a maximum of approximately 7.2 pCN.
机译:将新的材料和工艺(例如纤维复合材料)引入工业应用,需要对无损评估进行评估,对高分辨率的要求也越来越高,以确定结构参数,例如纤维分布和方向。超声相控阵方法是CFRP组件中最常用的非破坏性评估技术。由于技术原因,将PZT复合材料构造为换能器内部的有源元件,现有相控阵传感器的频率(以及相关分辨率)限制为大约20 MHz。使用扫描声显微镜(SAM)可以在20 MHz至100 MHz的典型频率范围内获得更高的分辨率。令人兴奋的当前SAM技术基于单元素换能器,没有使用相控阵算法进行角度变化的潜力。为了将相控阵技术的优势应用于扫描声学显微镜的频率范围,必须开发新的设计理念和传感器元件。氮化铝是一种有希望的材料,在考虑的频率范围内可用作压电传感器材料。未来的高频相控阵应用的潜力。本文介绍了厚度高达10微米的压电氮化铝膜的基础发展。我们已经研究和优化了氮化铝薄膜层相对于其压电性能的沉积工艺。因此,我们创建了一个系统,其中包括一个特定的测试设置,以确定压电电荷常数(d33)和换能器的电声行为。使用用于磁控溅射工艺的不同参数,即压力和偏置电压,将单元件换能器沉积在具有铝电极的硅基板上。随后,我们在脉冲回波模式下进行了高达500 MHz的声学测量,并确定了电气和机电性能。结果,我们已经确定溅射工艺有两个基本参数集,以获得最大约7.2 pCN的优异压电电荷常数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号