【24h】

Integration of Multi-Scale Modeling of Composites Under High Strain Rate Impact with Surrogate

机译:高应变率冲击下复合材料多尺度模型的集成

获取原文
获取原文并翻译 | 示例

摘要

This paper presents multiscale modeling of composites under high strain raternimpact using surrogate models. The material response under high strain rate impactrnhas relatively been well studied for metallic materials. However, when it comes torncomposites, the mathematical model for failure becomes very complicated due tornvarious failure modes. Under high strain rate impact, the major failure mechanismsrnare fiber breakage, fiber debonding and pullout and delamination between adjacentrnplies. The first two mechanisms initiate at the fiber-matrix level and should bernmodeled in micro-scale, while delamination should be modeled in meso-scale andrnmacro-scale. In micro-scale, fiber-matrix structure is modeled to simulate fiberrnfracture and debonding, which contribute to the degradation of material propertiesrnin macro-scale. In macro-scale, high strain rate impact is simulated using nonlinearrnexplicit finite element analysis with the degraded material properties from microscalernsimulation. Delamination is also included in macro-scale.rnThis paper develops a multiscale modeling technique of fracture failurernbehavior of composites under high strain rate. Multiscale modeling of fracturernphenomena of composites will consist of (1) micro-scale modeling of fiber-matrixrnstructure using the unit-volume-element technique, which can incorporate with thernboundary effect, and the level set method for crack modeling, which can model therncrack propagation independent of finite element mesh; (2) macro-scale simulationrnof composite panels under high strain-rate impact using material responserncalculated from micro-scale modeling; and (3) surrogate modeling to integrate therntwo scales. The degradation of material strength due to fiber cleavage will berncalculated from micro-scale modeling and will be used in macro-scale simulation.rnThe surrogate model includes both micro-scale parameters, such as volume fraction,rnand macro-scale parameters, such as strain rate. The proposed multiscale modelingrntechnique can provide a practical alternative to massive parallel processing.
机译:本文介绍了使用替代模型在高应变率冲击下复合材料的多尺度建模。对于金属材料,已经对高应变速率冲击下的材料响应进行了很好的研究。但是,当涉及到复杂的故障时,由于各种故障模式,故障的数学模型变得非常复杂。在高应变率冲击下,主要破坏机制是纤维断裂,纤维脱粘,相邻纤维之间的拉拔和分层。前两种机制在纤维基质水平上启动,应在微观尺度上建模,而分层应在中尺度和宏观尺度上建模。在微观尺度上,对纤维-基质结构进行建模以模拟纤维的断裂和脱粘,这有助于宏观尺度上材料性能的下降。在宏观尺度上,使用非线性显式有限元分析模拟了高应变速率冲击,并从微观尺度模拟了退化的材料特性。分层也包括在宏观尺度上。本文开发了一种在高应变速率下复合材料断裂破坏行为的多尺度建模技术。复合材料断裂现象的多尺度建模将包括(1)使用单位体积元素技术对纤维-基体结构进行微观尺度建模,该模型可以结合边界效应,以及对裂纹建模进行水平集方法,可以对裂隙扩展进行建模。独立于有限元网格; (2)使用微观模型计算得到的材料响应,在高应变率冲击下进行宏观模拟。 (3)替代建模以整合两个尺度。纤维断裂导致的材料强度降低将通过微观模型进行计算,并将用于宏观模拟。替代模型包括微观参数,例如体积分数,rn和宏观参数(例如应变)。率。所提出的多尺度建模技术可以为大规模并行处理提供一种实用的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号