首页> 外文会议>Proceedings of the ASME India oil and gas pipeline conference 2013 >DESIGN AND PROCESSING OF NIOBIUM MICROALLOYED COST EFFECTIVE LINE PIPE STEEL WITH ENHANCED STRENGTH AND FRACTURE TOUGHNESS
【24h】

DESIGN AND PROCESSING OF NIOBIUM MICROALLOYED COST EFFECTIVE LINE PIPE STEEL WITH ENHANCED STRENGTH AND FRACTURE TOUGHNESS

机译:强度和断裂韧性增强的铌微合金成本有效管线钢的设计与加工

获取原文
获取原文并翻译 | 示例

摘要

The functional role of niobium in the original HTP X-80 design of high niobium (0.1 wt%), low interstitial ( C 0.03 to 0.04, N<0.005wt%) cost-effective base chemistry is (ⅰ) to use Zener drag from strain induced precipitation of NbC during thermo-mechanical rolling and solute drag from solute niobium to retard static recrystallization, (ⅱ) to impart adequate rolling reduction below temperature of no recrystallization to promote large strain accumulation in pancaked austenite, and (ⅲ) to promote fine ferrite grain size by strain induced phase transformation under accelerated cooling conditions, thereby obtain high strength and fracture toughness at low temperature through grain size effect. Residual niobium in austenite is used to impart additional strength through transformation hardening, dislocation hardening from accelerated cooling and precipitation strengthening of ferrite through accelerated cooling and interrupted cooling at coiling temperature. Recent research has confirmed the importance of control of density and dispersion of crystallographic high angle boundaries which are superimposed on the morphological microstructure in order to prevent the initiation of brittle fracture. Extensive research has been carried out in HTP base chemistry to determine the processing options to control the density and dispersion of high angle boundaries to produce higher grade ( >X-80) line pipe steels with enhanced fracture toughness. Whereas the resistance to ductile fracture is measured by Charpy toughness, the resistance to brittle fracture is inferred from ductile to brittle transition temperature and percentage shear in DWTT. The research has underscored the importance of austenite grain refinement in upstream processing of HTP before pancaking in finish rolling to control density and dispersion of high angle boundaries in order to prevent brittle fracture initiation. Experimental results are presented which demonstrate that HTP base chemistry is a cost effective design to produce higher grade line pipe steels, not only to achieve high resistance to ductile and brittle fracture in the base plate, but also in HAZ regions associated with relatively high heat input welding in weld fabrication of pipes from plates, and Girth field welding of pipes involving low heat input multi-pass welding.
机译:铌在高Hb(0.1 wt%),低间隙(C 0.03至0.04,N <0.005wt%)具有成本效益的基础化学的原始HTP X-80设计中的功能作用是(ⅰ)使用齐纳电阻热机械轧制过程中应变诱发NbC的析出以及溶质从溶质铌中拉出以阻碍静态再结晶;(ⅱ)在不发生重结晶的温度以下产生足够的压下量,以促进煎饼奥氏体中大的应变积累,(accumulation)促进细化通过在加速冷却条件下通过应变诱导相变使铁素体晶粒尺寸,从而通过晶粒尺寸效应在低温下获得高强度和断裂韧性。奥氏体中残留的铌用于通过相变硬化,加速冷却中的位错硬化以及通过加速冷却和在卷取温度下的间断冷却来强化铁素体的析出而赋予附加强度。最近的研究已经证实了控制结晶学高角度边界的密度和分散的重要性,为了防止脆性断裂的发生,这些结晶和高角度边界叠加在形态微观结构上。在HTP基础化学领域已进行了广泛的研究,以确定控制高角度边界的密度和弥散的加工选项,以生产具有更高断裂韧性的更高等级(> X-80)管线钢。韧性断裂的抗力是通过夏比韧性来衡量的,而脆性断裂的抗性是从韧性到脆性的转变温度和DWTT中的剪切百分率推断出来的。这项研究强调了奥氏体晶粒细化在精轧前结块之前在HTP上游加工中的重要性,以控制高角度边界的密度和分散,以防止脆性断裂的产生。提出的实验结果表明,HTP基础化学是生产高品位管线钢的经济有效的设计,不仅可实现对基板的高韧性和脆性断裂的高抵抗力,而且可在与相对较高的热输入相关的HAZ地区实现薄板管道的焊接制造中的焊接,以及涉及低热量输入多道次焊接的管道周长现场焊接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号