首页> 外文会议>Recent advances in fracture >Creep fracture during solute-drag creep and superplastic deformation
【24h】

Creep fracture during solute-drag creep and superplastic deformation

机译:溶质-拖动蠕变和超塑性变形期间的蠕变断裂

获取原文
获取原文并翻译 | 示例

摘要

Creep fracture behavior has been studied in Al-Mg and Al-Mg-Mn alloys undergoing solute-drag creep and in microduplex stainless steel undergoing both solute-drag creep and superplastic deformation. Failure in these materials is found to be controlled by two mechanisms, neck formation and cavitation. The mechanism of creep fracture during solute-drag creep in Al-Mg is found to change from necking-controlled fracture to cavitation-controlled fracture as Mn content is increased. Binary Al-Mg material fails by neck formation during solute-drag creep, and cavities are formed primarily in the neck region due to high hydrostatic stresses. Ternary alloys of AL-Mg-Mn containing 0.25 and 0.50 wt pct Mn exhibit more uniform cavitation, with the 0.50Mn alloy elearly failing by cavity interlinkage. Filure in the microduplex stainless steel is dominated by neck formation during solute-drag creep deformation but is controlled by cavity growth and interlinkage during superplastic deformation. Cavitation was measured at several strains, and found to increase as an exponential function of strain. An important aspect of cavity growth in the stainless steel is the long latency time before significant cavitation occurs. For a short latency period, cavitation acts to significantly reduce ductility below that allowed by neck growth alone. This effect is most pronounced in materials with a high strain-rate sensitivity, for which neck growth occurs very slowly.
机译:在经历了溶质-拖动蠕变的Al-Mg和Al-Mg-Mn合金以及经历了溶质-拖动蠕变和超塑性变形的微双相不锈钢中,已经研究了蠕变断裂行为。这些材料的失效被发现是由两种机制控制的,即颈部形成和空化。随着Mn含量的增加,在Al-Mg的固溶-拖动蠕变过程中,蠕变断裂的机理从颈缩控制断裂变为空化控制断裂。二元Al-Mg材料在溶质-拖动蠕变过程中由于颈部形成而失效,并且由于高静液压应力,主要在颈部区域形成了空腔。含有0.25和0.50 wt%的Mn的AL-Mg-Mn三元合金表现出更均匀的空化,而0.50Mn合金早期由于空洞互连而失效。微双相不锈钢中的缺陷主要是在溶质-拖动蠕变变形过程中形成颈部,而在超塑性变形过程中,则由空洞的生长和内在联系来控制。在几种应变下测量了空化,并且发现空化作为应变的指数函数而增加。不锈钢中空洞生长的一个重要方面是在发生明显的空化之前需要较长的等待时间。在较短的潜伏期中,空化作用会大大降低延展性,使其低于仅颈部生长所允许的延展性。在应变率敏感度高的材料中,这种影响最为明显,因为颈部生长非常缓慢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号