首页> 外文会议>Remote sensing for agriculture, ecosystems, and hydrology XIII >Remote sensing of snow cover and snow water equivalent for the historic February snowstorms in the Baltimore/Washington D.C. area during February 2010
【24h】

Remote sensing of snow cover and snow water equivalent for the historic February snowstorms in the Baltimore/Washington D.C. area during February 2010

机译:遥感2010年2月巴尔的摩/华盛顿特区历史性2月暴风雪的积雪和雪水当量

获取原文
获取原文并翻译 | 示例

摘要

The unprecedented snowfall during early February 2010 in the Baltimore/Washington area provided a unique opportunity to map, monitor and measure snowfall, snow cover extent, snow water equivalent (SWE), and snow melt using a suite of remote sensing instruments. Because snow cover in the Middle Atlantic area of the United States is in most years patchy and a true multi-layered snow pack is rarely established, utilizing a remote sensing approach to observe snow parameters is more challenging than in regions where falling snow and snow packs are more reliable. The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) was used to assess SWE and the onset of melt. Although the passive microwave signatures illustrated in this study are clearly related to snow, it is not straightforward whether or not the signatures are due to variations in SWE or to snowpack metamorphism or to a combination of both. This study shows that the SWE algorithm was affected by the high variability of snowfall intensity and accumulation as well as by the complex surface features in the Baltimore/Washington area. On the two days when intense snowfalls occurred, February 6 and 10, 2010, retrievals of SWE were compromised. This was likely a result of thermal emission from water droplets in low-level clouds within portions of the storm, which acted to increase AMSR-E Tbs, thereby rendering minimal or zero values for SWE. The presence of such clouds strongly impacts the sensitivity of estimating SWE using radiometric measurements near 19 and 37 GHz. Glaze or icy layers within and on the surface of the snowpack served to increase scattering, thus lowering Tb and boosting the retrieved SWE values, resulting in an overestimation of SWE, first in southern portions of the study area and then farther north as the month of February progressed.
机译:2010年2月上旬,巴尔的摩/华盛顿地区出现了前所未有的降雪,这为使用一套遥感仪器测绘,监测和测量降雪,积雪程度,雪水当量(SWE)和融雪提供了独特的机会。由于美国中大西洋地区的积雪多数年来都是零星的,并且很少建立真正的多层积雪,因此与在降雪和积雪的地区相比,利用遥感方法观察积雪参数更具挑战性更可靠。用于EOS的先进微波扫描辐射仪(AMSR-E)用于评估SWE和熔体的开始。尽管本研究中说明的无源微波信号明显与雪有关,但信号是否是由于SWE的变化或积雪变质或两者的结合并不是一件容易的事。这项研究表明,SWE算法受降雪强度和积雪高度变化以及巴尔的摩/华盛顿地区复杂的地表特征的影响。在2010年2月6日至10日的大降雪发生的这两天,SWE的检索受到了影响。这可能是由于暴风雨部分内低层云中的水滴散发的热量而导致的,这些水滴的作用是增加AMSR-E Tbs,从而使SWE值最小或为零。此类云的存在强烈影响使用19 GHz和37 GHz附近的辐射测量结果估算SWE的敏感性。积雪内部和表面上的釉层或冰层增加了散射,从而降低了Tb并提高了检索到的SWE值,从而导致SWE的高估,首先是研究区域的南部,然后是当月的更北部。 2月进行了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号