首页> 外文会议>Satellite Data Compression, Communications, and Archiving II >Residual Coding with a JPEG2000 Framework for Controlling L-Infinity Error Applied to Ultraspectral Sounder Data
【24h】

Residual Coding with a JPEG2000 Framework for Controlling L-Infinity Error Applied to Ultraspectral Sounder Data

机译:JPEG2000框架的残余编码,用于控制应用于超光谱测深仪数据的L无限误差

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a follow-up to last year's SPIE meeting where we presented a residual encoding method to control maximum absolute error (MAE) based on JPEG2000 Part 2 standard and which was applied to hyperspectral data. In this paper, we evaluate an improved version of the approach on the ultraspectral sounder satellite data made available by NOAA. The data set used consists of a subset of 1,501 bands out of the 2,378 total and where each band is an image of size 90 by 135 pixels. Each pixel or data value is a digital count integer that requires 12 - 14 bits to represent. We present compression performance using a transform in the band (z- or cross-component) direction. We use either the Karhunen-Loeve transform or the discrete wavelet transform with a non-uniform bit-rate allocation to take advantage of the energy compaction. One of the main features of this compression scheme is that residuals (original minus the decompressed values) are also coded in order to control the MAE; therefore, lossless compression can also be accomplished by using a desired MAE of 0.5. In all cases, the quantized residuals are losslessly encoded using the embedded block coding with optimized truncation (EBCOT) bit-plane encoding method that is part of JPEG2000 Part 1. Finally, our recent algorithm for automatically choosing the best (smallest total) combination of the two contributing bit rates is also extended to the 3-dimensional case. The two rates are: (1) the Open Loop rate for the lossy compression using JPEG2000 Part 2 by itself and (2) the EBCOT rate that results from the coding of the quantized residuals. The basis for the approach is the modeling of the residuals using generalized Gaussian random variables. Results for lossless and near-lossless compression will be presented using both an exhaustive search and the automatic search method for finding the minimum overall bit rate.
机译:本文介绍了去年SPIE会议的后续活动,在该会议上,我们提出了一种基于JPEG2000 Part 2标准的残留编码方法来控制最大绝对误差(MAE),并将其应用于高光谱数据。在本文中,我们根据NOAA提供的超光谱探测卫星数据评估了该方法的改进版本。所使用的数据集由总共2378个中的1,501个波段的子集组成,其中每个波段都是大小为90 x 135像素的图像。每个像素或数据值都是一个数字计数整数,需要12-14位来表示。我们介绍了在频段(z分量或跨分量)方向上使用变换的压缩性能。我们使用具有不均匀比特率分配的Karhunen-Loeve变换或离散小波变换来利用能量压缩。该压缩方案的主要特征之一是还对残差(原始值减去解压缩后的值)进行编码,以控制MAE。因此,通过使用期望的MAE 0.5也可以实现无损压缩。在所有情况下,量化残差均采用JPEG2000第1部分的部分,采用具有优化截断功能的嵌入式块编码(EBCOT)位平面编码方法进行无损编码。最后,我们最近的算法可自动选择最佳(最小总)组合。两个贡献的比特率也扩展到3维情况。这两个速率是:(1)单独使用JPEG2000第2部分进行有损压缩的开环速率,以及(2)量化残差编码产生的EBCOT速率。该方法的基础是使用广义高斯随机变量对残差进行建模。使用穷举搜索和自动搜索方法来呈现无损和近无损压缩的结果,以找到最小的总比特率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号