首页> 外文会议>Semiconductor electrolyte interface and photoelectrochemistry >Photoelectrolysis of Water in Tj-a-Si Solar Cell Biased CM-n-TiO_2 Pt and in monolithic Self-Driven n-TiO_2 - Mn_2O_3 coated Tj-a-Si Pt Photoelectrochemical Cells
【24h】

Photoelectrolysis of Water in Tj-a-Si Solar Cell Biased CM-n-TiO_2 Pt and in monolithic Self-Driven n-TiO_2 - Mn_2O_3 coated Tj-a-Si Pt Photoelectrochemical Cells

机译:Tj-a-Si太阳能电池偏置CM-n-TiO_2中水的光电解 Pt和单块自驱动n-TiO_2-Mn_2O_3涂覆的Tj-a-Si 铂光电化学电池

获取原文
获取原文并翻译 | 示例

摘要

The drive to develop clean, renewable sources of energy is in high demand with the world's growing dependence on fossil fuel as the primary energy source. Fossil fuel when burned, emit harmful by-products, greenhouse gas such as CO_2 which contributes to global warming, sulfur gases and mercury released from coal fired power plant are directly associated with acid rain, and acid mine drainage. The photoelectrochemical water splitting on the semiconductor electrode surface converting solar energy to hydrogen fuel offers an alternative energy solution which is clean and renewable (1). Progress in R&D on photo-electrochemical hydrogen generation is based on the development of new photo-active materials and photoelectrode fabrication. Oxide based semiconductors appear to be the most promising materials for water splitting using solar energy due to their long-term chemical stability, non toxicity, and relatively low cost processing technology. Moreover, their properties can be chemically modified by incorporating impurities such as H, N, S, C, and transition metals in their crystalline structures (2-9). Since the first publication on amorphous silicon (a-Si) relevant to the solar cell in the late 1960s (10), it has been studied as a promising material not only for electricity generation but also for water splitting to hydrogen and oxygen gases. Amorphous Silicon (a-Si) is cheaper than its crystalline form and the stacked triple-junction thin-film (nipipip) amorphous silicon (Tj-a-Si) generates higher photovoltage and photocurrent density. The a-Si cell also has a lower light induced degradation; however, it lacks stability in aqueous solutions. Different materials and
机译:随着世界对矿物燃料作为主要能源的日益依赖,对开发清洁,可再生能源的驱动器的需求量很大。化石燃料燃烧时会散发有害的副产品,导致全球变暖的CO_2等温室气体,燃煤电厂释放的硫气和汞与酸雨和酸性矿山排水直接相关。在半导体电极表面分裂的光电化学水将太阳能转化为氢燃料提供了清洁和可再生的替代能源解决方案(1)。光电化学制氢技术的研发进展基于新型光敏材料和光电极制造技术的发展。基于氧化物的半导体由于其长期的化学稳定性,无毒和相对低成本的加工技术,似乎是使用太阳能进行水分解的最有前途的材料。此外,可以通过在其晶体结构中掺入诸如H,N,S,C和过渡金属之类的杂质来化学改性其性能(2-9)。自1960年代后期首次发表与太阳能电池有关的非晶硅(a-Si)以来(10),人们不仅将其作为一种有前途的材料进行了研究,还不仅用于发电,还可以将水分解为氢气和氧气。非晶硅(a-Si)比其晶体形式便宜,而堆叠的三结薄膜(nip / nip / nip)非晶硅(Tj-a-Si)产生更高的光电压和光电流密度。 a-Si电池还具有较低的光诱导降解;但是,它在水溶液中缺乏稳定性。不同的材料和

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号