首页> 外文会议>Smart Structures and Integrated Systems Mar 3-6, 2003 San Diego, California, USA >Directional Decoupling of Piezoelectric Sheet Actuators for Shape and Vibration Control of Plate Structures
【24h】

Directional Decoupling of Piezoelectric Sheet Actuators for Shape and Vibration Control of Plate Structures

机译:压电薄板致动器的方向解耦,用于板结构的形状和振动控制

获取原文
获取原文并翻译 | 示例

摘要

With the advancement of actuator engineering, adaptive optic technology has grown considerably over the past couple of decades. Recently, there has been attention in lightweight adaptive optics where piezoelectric sheet actuators are directly attached on the back of optical mirrors to achieve a high precision surface shape with minimum additional weight [C. Kuo, R. Bruno,'90,'92; C. Liu and N. Hagood, '93; R. Kapania, P. Mohan, et al, 1998]. Philen and Wang [2001] investigated the shape control performance of a large flexible circular plate structure having directly attached thin strip piezoelectric sheet actuators placed in the plate's radial and circumferential directions. It was discovered that the performance of the system could be further improved if the piezoelectric actuator was decoupled in direction, meaning that the circumferential (radial) action of the radial (circumferential) actuators is eliminated while the radial (circumferential) action is maintained. To realize the decoupling effect, the performance of an active stiffener concept for high-precision shape and vibration control has been studied [Philen and Wang, 2002]. The active stiffener configuration consists of an insert (stiffener) placed between the host structure and the piezoelectric sheet actuator, which could produce the required decoupling effect. Similar to the active stiffener, the Active Fiber Composite (AFC) possesses a unique orthotropic actuation and has many advantages over the commonly used piezoceramic sheet actuator, thus providing a potential actuation scheme for the control of optical surfaces. In this paper, analytical investigations into several piezoelectric-type actuation methods for shape and vibration control of plate structures are presented. The research objective is to gain a fundamental understanding of the possible approaches. For the study, a performance comparison of the Active Fiber Composite (AFC), the Active Stiffener (AS), and the Direct Attached (DA) actuators for shape and vibration control of a circular plate structure is carried out. 3-D solid finite element models are derived for plates with the different treatments. The shape control results demonstrate that the AS and the AFC perform much better (more reduction of surface error) than the DA actuator due to the reduced authority in the decoupled direction, and the AS outperforms the AFC for the majority of the deformation modes investigated. While the AFC is able to achieve a greater reduction in the surface error when correcting for certain deformation modes, the required voltages for the AFC are much higher than the AS and DA for all the deformation modes investigated. For vibration control, a key problem for large space structures with a limited number of actuators and sensors is controller spillover, which is the spillover of the controller's energy into the higher vibration modes. Due to the reduction of the authority in the decoupled directions, the vibration control results show that the AS and the AFC both have less spillover of the controller's energy into the higher uncontrolled vibration modes than the DA. Similar to the shape control analysis, the AFCs perform comparably to the AS when controlling vibration, but at the cost of much higher voltages.
机译:随着执行器工程技术的进步,自适应光学技术在过去的几十年中有了长足的发展。近来,在轻型自适应光学器件中已引起关注,其中压电薄板致动器直接安装在光学镜的背面,从而以最小的附加重量实现了高精度的表面形状[C. Kuo,R.Bruno,'90,'92; C. Liu和N. Hagood,'93; R. Kapania,P。Mohan等,1998年]。 Philen和Wang [2001]研究了大型柔性圆形板结构的形状控制性能,该结构具有直接附着在板的径向和圆周方向上的薄带压电板致动器。已经发现,如果压电致动器在方向上解耦,则可以进一步改善系统的性能,这意味着在保持径向(周向)作用的同时,消除了径向(周向)致动器的周向(径向)作用。为了实现去耦效果,已经研究了主动加劲肋概念对高精度形状和振动控制的性能[Philen and Wang,2002]。有源加强筋配置包括一个插入件(加强筋),该插入件位于主体结构和压电薄板致动器之间,可以产生所需的去耦效果。与有源加强筋类似,有源纤维复合材料(AFC)具有独特的正交各向异性驱动,并且与常用的压电陶瓷薄板驱动器相比具有许多优势,因此为控制光学表面提供了一种潜在的驱动方案。在本文中,对几种用于板结构的形状和振动控制的压电式致动方法进行了分析研究。研究目的是对可能的方法有一个基本的了解。为了进行研究,对用于圆形板结构的形状和振动控制的活性纤维复合材料(AFC),活性增强剂(AS)和直接连接(DA)执行器进行了性能比较。推导了具有不同处理方式的板材的3-D实体有限元模型。形状控制结果表明,由于去耦方向上的权限减少,AS和AFC的性能比DA执行器好得多(表面误差的减少更多),并且在大多数研究的变形模式下,AS的性能均优于AFC。尽管在校正某些变形模式时,AFC可以大大降低表面误差,但对于所有调查的变形模式,AFC所需的电压都比AS和DA高得多。对于振动控制,对于执行器和传感器数量有限的大型空间结构,关键问题是控制器溢出,即控制器能量向更高振动模式的溢出。由于在解耦方向上权限的减少,振动控制结果表明,与DA相比,AS和AFC都将控制器的能量溢出到较高的不受控制的振动模式中。与形状控制分析相似,当控制振动时,AFC的性能与AS相当,但以更高的电压为代价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号