首页> 外文会议>Society of Plastics Engineers 61st Annual Technical Conference (ANTEC 2003) Vol.1 May 4-8, 2003 Nashville, Tennessee >PREDICTING PLASTIC ENERGY DISSIPATION (PED) USING PHENOMENOLOGICAL CONSTITUTIVE EQUATIONS FOR GLASSY AND SEMI-CRYSTALLINE POLYMER SOLIDS
【24h】

PREDICTING PLASTIC ENERGY DISSIPATION (PED) USING PHENOMENOLOGICAL CONSTITUTIVE EQUATIONS FOR GLASSY AND SEMI-CRYSTALLINE POLYMER SOLIDS

机译:使用物候本构方程预测玻璃和半结晶聚合物固体的塑性能耗散(PED)

获取原文
获取原文并翻译 | 示例

摘要

It has been experimentally demonstrated that Plastic Energy Dissipation (PED) is a dominant melting mechanism in twin-rotor co- and counter-rotating processing equipment. Such devices force compacted polymer particulates to undergo repeated compressive, volume-wise, large compressive deformations, resulting in massive dissipative heating of the solid particulates and rapid melting. The large magnitude of PED has two important consequences: it results in very rapid end efficient volume-wise melting, enabling very fast processing rates and produces a very narrow "age distribution" melt, important for reactive processing. To date the experimental evaluation of PED, during large unconfined compressive cylindrical sample deformations, at appreciable strain rates, can be used to arrive at reasonable engineering estimates of the melting lengths for given polymers in specific processing equipment operating under given processing conditions. But this task involves a large number of PED-evaluation experiments, because of the lack of constitutive equations which are capable of describing the compressive stress-strain behavior of solid polymers at "engineering" strains and strain rates. The object of this presentation is to evaluate and modify existing constitutive relations for amorphous polymers using the large experimental date that have been generated in our laboratories. An acceptable constitutive relation will not only reduce the number of experiments necessary to evaluate PED and estimate melting lengths, but a needed element in the development of PED melting simulation models.
机译:实验已经证明,塑性能量耗散(PED)是双转子同向和反向旋转加工设备中的主要熔化机制。这种装置迫使压实的聚合物颗粒经受反复的按体积的大压缩变形,从而导致固体颗粒的大量耗散加热和快速熔化。大量的PED具有两个重要的后果:导致非常快速的最终有效的按体积熔化,实现非常快的加工速度,并产生非常窄的“年龄分布”熔体,这对于反应性加工很重要。迄今为止,在较大的无限制压缩圆柱样品变形期间,在可观的应变速率下,PED的实验评估可用于在给定加工条件下操作的特定加工设备中,对给定聚合物的熔融长度进行合理的工程估算。但是由于缺少能够描述固体聚合物在“工程”应变和应变速率下的压缩应力-应变行为的本构方程,该任务涉及大量的PED评估实验。本演示文稿的目的是使用我们实验室中产生的大量实验数据来评估和修改非晶聚合物的现有本构关系。可接受的本构关系不仅会减少评估PED和估算熔化长度所需的实验次数,而且会减少PED熔化模拟模型开发中的必要元素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号