首页> 外文会议>STP 1467; International Symposium on Zirconium in the Nuclear Industry; 20040613-17; Stockholm(SE) >Effect of Alloying Elements and Impurities on in-BWR Corrosion of Zirconium Alloys
【24h】

Effect of Alloying Elements and Impurities on in-BWR Corrosion of Zirconium Alloys

机译:合金元素和杂质对锆合金在BWR内腐蚀的影响

获取原文
获取原文并翻译 | 示例

摘要

The data base on the corrosion behavior of Zr alloy materials under BWR conditions was evaluated with respect to the burnup target of 70 MWd/kgU. At high burnups, corrosion rate and the rate of hydrogen pickup (HPU) may increase. This onset of increase obviously depends on the material, but also seems to be significantly affected by the coolant water chemistry. Because small differences in corrosion behavior at lower bumup might become more and more important with increasing burnup, Framatome ANP has performed several studies on the separate and combined effects of (1) alloying content of the claddings, (2) cladding material condition, (3) impurity content of the cladding, and (4) the coolant chemistry. This paper focuses on the effects the concentration of alloying elements and of impurities (including microstructural differences imposed by the annealing treatment) have on corrosion. The corrosion effects were evaluated in material test irradiation programs in two BWRs. Zircaloy type materials processed at low temperatures (LTP), defined by a low particle growth parameter (PGP) value, exhibit a maximum corrosion resistance between 1.2 and 1.5% Sn. Impurities, such as C, O, and P can increase the corrosion of Zircaloy in BWRs at high burnup. The higher the corrosion resistance of the base material, the more pronounced is the increase seen at high burnup. Above a critical PGP value, in-pile corrosion increases. At high burnups, Zry-4 shows a higher increase with increasing PGP than Zry-2, whereas at lower burnups both behave similarly. The critical PGP value varies with the chemical composition, such as Fe, Cr, and Ni content and the distribution of second phase particles (SPP). The effect of Si is more complex. Si increases in-pile corrosion at contents in excess of 140 ppm. Contents at 80 to 140 ppm can be beneficial, when the β-quench rate applied during fabrication is not high enough to ensure a uniform distribution of the SPP, and the alloying composition and the concentration of impurities is in a beneficial range. The hydrogen pickup fraction (HPUF) of Zircaloy type samples in BWRs decreases with decreasing corrosion resistance but differs from plant to plant. There are indications that the difference can partially be attributed to the Fe content in the coolant. The results are in agreement with the irradiation experience with Zry-2 LTP cladding extending up to 73 MWd/kgU in different BWRs.
机译:相对于70 MWd / kgU的燃耗目标,基于Zr合金材料在BWR条件下的腐蚀行为的数据库进行了评估。在燃耗较高的情况下,腐蚀速率和氢气吸收率(HPU)可能会增加。这种增加的开始显然取决于材料,但似乎也受到冷却剂水化学性质的显着影响。由于随着燃耗的增加,在较低熔炼温度下腐蚀行为的细微差别可能变得越来越重要,因此Framatome ANP对(1)包层的合金含量,(2)包层材料条件,(3 )包层中的杂质含量,以及(4)冷却液化学成分。本文重点研究合金元素和杂质浓度(包括退火处理带来的微观结构差异)对腐蚀的影响。在两个BWR的材料测试辐射程序中评估了腐蚀效果。由低颗粒生长参数(PGP)值定义的在低温(LTP)下加工的Zircaloy型材料表现出1.2至1.5%Sn的最大耐腐蚀性。诸如C,O和P的杂质会在燃尽时增加BWR中Zircaloy的腐蚀。基材的耐蚀性越高,在高燃耗时看到的增加越明显。超过临界PGP值,桩内腐蚀增加。在燃耗较高的情况下,与Pry相比,Zry-4随PGP的增加显示出更高的增加,而燃耗较低的情况下两者的表现相似。 PGP的临界值随化学成分(例如Fe,Cr和Ni的含量)以及第二相颗粒(SPP)的分布而变化。 Si的作用更为复杂。当含量超过140 ppm时,Si会增加桩内腐蚀。当在制造过程中施加的β-淬火速率不足够高以确保SPP的均匀分布并且合金化组成和杂质的浓度在有利范围内时,在80至140ppm的含量可以是有益的。 BWR中Zircaloy型样品的氢吸收分数(HPUF)随着耐腐蚀性的降低而降低,但工厂之间不同。有迹象表明,差异可以部分归因于冷却剂中的铁含量。结果与Zry-2 LTP覆层在不同BWR中扩展至73 MWd / kgU的辐照经验一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号