首页> 外文会议>Structure-Property Relationships of Oxide Surfaces and Interfaces II >Electrochemical Properties Of Copper Oxide Surfaces, Buried Interfaces, And Subsurface Zones And Their Use To Characterize These Entities
【24h】

Electrochemical Properties Of Copper Oxide Surfaces, Buried Interfaces, And Subsurface Zones And Their Use To Characterize These Entities

机译:氧化铜表面,埋藏界面和地下区域的电化学性质及其在表征这些实体中的用途

获取原文
获取原文并翻译 | 示例

摘要

Electrochemistry of oxides is an expanding area of oxide characterization. Although, interfacial characterization techniques including surface science methods have contributed substantially to our current understanding of the processes involved in the oxidation of metals and alloys, the characterization of subsurface zones and buried interfaces still remain a major challenge. Copper reactions with oxygen have been studied by high vacuum based techniques of AES, ELS, ISS, XPS, SIMS, LEED, STM, SEXAFS, HEIS and PFDMS and with optical methods, like UV-Vis-NIR, diffuse reflectance spectroscopy, FTIR and photoluminescence spectroscopes. However it has become evident that the processes that produce thermally and plasma grown oxide films on metals and alloys are electrochemical in nature and can be modeled by electrochemical concepts. Therefore, it is important that the oxide overlayers, thin films and thick films be characterized by electrochemical means-with electrochemical methods, such as linear potential sweep voltammetry, cyclic voltammetry, galvanostatic reduction and coulometry which allow the identification of copper (Ⅰ), copper (Ⅱ) and copper (Ⅲ) oxides. Interest in copper as a technologically important material needs to be met with greater understanding of the fundamental nature of copper oxide structures. In this study, the authors demonstrate the use of Linear Sweep Voltammetry (LSV) to study buried structures in the thermally grown oxide layers on copper. In particular, LSV can be used to detect reactions at buried interfaces. It also recognizes Cu_3O_2 and the decomposition of copper oxides at the metal-oxide interface. The two key parameters that drive oxide growth and decomposition are demonstrated to be oxygen activity and the free energies of formation of the oxides. The complex nature of the oxidation of copper, as well as other metals and alloys, will be described qualitatively using the Modified Cabrera-Mott (C-M) Model. Surface studies of oxidation of metals and alloys need to be supported and complemented by other techniques such as electrochemical methods.
机译:氧化物的电化学是氧化物表征的扩展领域。尽管包括表面科学方法在内的界面表征技术对我们目前对金属和合金氧化过程的理解做出了重大贡献,但对地下区域和掩埋界面的表征仍然是一项重大挑战。已经通过基于高真空的AES,ELS,ISS,XPS,SIMS,LEED,STM,SEXAFS,HEIS和PFDMS技术以及诸如UV-Vis-NIR,漫反射光谱法,FTIR和光致发光光谱仪。然而,已经明显的是,在金属和合金上产生热和等离子体生长的氧化膜的过程本质上是电化学的,并且可以通过电化学概念来建模。因此,重要的是用电化学方法表征氧化物覆盖层,薄膜和厚膜,并采用电化学方法,例如线性电势扫描伏安法,循环伏安法,恒电流还原法和库仑法,以鉴定铜(Ⅰ),铜。 (Ⅱ)和铜(Ⅲ)氧化物。对铜作为一种技术上重要的材料的兴趣需要通过对氧化铜结构的基本性质有更深入的了解来满足。在这项研究中,作者演示了使用线性扫描伏安法(LSV)研究铜上热生长的氧化物层中的掩埋结构。特别是,LSV可用于检测掩埋界面的反应。它还可以识别Cu_3O_2和金属-氧化物界面处的铜氧化物的分解。证明驱动氧化物生长和分解的两个关键参数是氧活度和氧化物形成的自由能。铜以及其他金属和合金氧化的复杂性质将使用改良的Cabrera-Mott(C-M)模型定性地描述。金属和合金氧化的表面研究需要其他技术来支持和补充,例如电化学方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号