首页> 外文会议>Terahertz Physics, Devices, and Systems X: Advanced Applications in Industry and Defense >Probing Charge Transfer and Hot Carrier Dynamics in Organic Solar Cells with Terahertz Spectroscopy
【24h】

Probing Charge Transfer and Hot Carrier Dynamics in Organic Solar Cells with Terahertz Spectroscopy

机译:用太赫兹光谱探测有机太阳能电池中的电荷转移和热载流子动力学

获取原文
获取原文并翻译 | 示例

摘要

Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C_(60)) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C_(60) were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C_(60), electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C_(60) followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C_(60), where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.
机译:时间分辨太赫兹光谱(TRTS)用于研究电荷的产生,转移以及热载流子在有机太阳能电池材料中的作用。研究了两个模型分子光伏系统:用酞菁锌(ZnPc)或α-六氟噻吩(α-6T)作为电子给体,并使用buckminsterfullerene(C_(60))作为电子受体。 TRTS提供了由载流子和迁移率的变化组成的载流子电导率动力学。通过将时间分辨光谱学与TRTS结合使用,可以消除这两种影响。 C_(60)的亚皮秒光诱导电导率衰减动力学被揭示是由自动电离引起的:分子固体中产生电荷的内在过程。在供体-受体共混物中,长寿命的光诱导电导率用于组分的重量分数优化。在纳米多层膜中,光诱导的电导率可确定最佳的层厚度。在ZnPc / C_(60)薄膜中,来自ZnPc的电子转移会产生热电荷,这些电荷在热时会局部化并且移动性降低。在C_(60)中激发高位的Franck Condon态,然后将空穴转移到ZnPc,同样会产生自定位的热电荷载流子。电荷转移显然先于载流子冷却。这张图片与α-6T/ C_(60)中的电荷转移形成对比,其中空穴转移是从热化状态发生的,产生的平衡载流子没有显示出冷却和自定位的特征。这些结果说明了太赫兹光谱法对探测电荷转移反应的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号