首页> 外文会议>Terahertz, RF, millimeter, and submillimeter-wave technology and applications VI >Integrated RF Photonic Devices Based on Crystal Ion Sliced Lithium Niobate
【24h】

Integrated RF Photonic Devices Based on Crystal Ion Sliced Lithium Niobate

机译:基于晶体离子切片铌酸锂的集成射频光子器件

获取原文
获取原文并翻译 | 示例

摘要

This paper reports on the development of thin film lithium niobate (TFLN™) electro-optic devices at SRICO. TFLN™ is formed on various substrates using a layer transfer process called crystal ion slicing. In the ion slicing process, light ions such as helium and hydrogen are implanted at a depth in a bulk seed wafer as determined by the implant energy. After wafer bonding to a suitable handle substrate, the implanted seed wafer is separated (sliced) at the implant depth using a wet etching or thermal splitting step. After annealing and polishing of the slice surface, the transferred film is bulk quality, retaining all the favorable properties of the bulk seed crystal. Ion slicing technology opens up a vast design space to produce lithium niobate electro-optic devices that were not possible using bulk substrates or physically deposited films. For broadband electro-optic modulation, TFLN™ is formed on RF friendly substrates to achieve impedance matched operation at up to 100 GHz or more. For narrowband RF filtering functions, a quasi-phase matched modulator is presented that incorporates domain engineering to implement periodic inversion of electro-optic phase. The thinness of the ferroelectric films makes it possible to in situ program the domains, and thus the filter response, using only few tens of applied volts. A planar poled prism optical beam steering device is also presented that is suitable for optically switched true time delay architectures. Commercial applications of the TFLN™ device technologies include high bandwidth fiber optic links, cellular antenna remoting, photonic microwave signal processing, optical switching and phased arrayed radar.
机译:本文报道了SRICO的薄膜铌酸锂(TFLN™)电光器件的发展。 TFLN™使用称为晶体离子切片的层转移工艺在各种基板上形成。在离子切片过程中,将轻离子(例如氦气和氢离子)以一定深度注入到块状种子晶圆中,该深度取决于注入能量。在将晶片粘结到合适的处理衬底之后,使用湿法蚀刻或热分离步骤在植入深度处分离(切片)植入的种子晶片。在对切片表面进行退火和抛光之后,转移的薄膜具有整体质量,保留了整体晶种的所有有利特性。离子切片技术为生产铌酸锂电光器件开辟了广阔的设计空间,而这是使用块状基板或物理沉积膜无法实现的。对于宽带电光调制,在射频友好基板上形成TFLN™,以实现高达100 GHz或更高频率的阻抗匹配操作。对于窄带射频滤波功能,提出了一种准相位匹配的调制器,该调制器结合了域工程技术来实现电光相位的周期性反转。铁电薄膜的薄度使得仅使用几十伏特的电压就可以对磁畴进行原位编程,从而实现滤波器响应。还提出了一种平面极化棱镜光束转向装置,其适用于光学开关的真实时间延迟架构。 TFLN™设备技术的商业应用包括高带宽光纤链路,蜂窝天线远程处理,光子微波信号处理,光交换和相控阵雷达。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号