首页> 中文学位 >Ion Transfer at Micro--Water/1,2-Dichloroethane Interface for Control Stimulation of Single living cell
【6h】

Ion Transfer at Micro--Water/1,2-Dichloroethane Interface for Control Stimulation of Single living cell

代理获取

目录

声明

Abstract

摘要

Table of Contents

List of figures

List of tables

Chapter 1:Introduction

1.1.Electrochemistry at Liquid/Liquid interfaces

1.2.Structure of Interface Between Two Immiscible Electrolytes Solutions

1.3.PolariZation of ITIES

1.3.1.Ideally non-polarizable interface

1.3.2.Ideally polarizable ITIES

1.3.3.Potential window

1.4. Charge transfer process across ITIES

1.4.1.Ion transfer across ITIES

1.4.2.Electron transfer

1.5.Applications of liquidlliquid interface

1.5.1.Analytical application

1.5.2.Biological,physiological and pharmaceutical applications

Chapter 2:Study of simple ion transfer of Acetylcholine across water/1,2-Dichloroethane interface

2.1.Introduction

2.2.Objectives and significance of the study

2.3. Experimental methods for studying ion transfer across liquid/liquid interface

2.3.1.Voltammetry

2.4.Materials and methods

2.4.1.Chemicals

2.4.2.Pulling micropipettes

2.4.3.Silanization of microplpettes

2.4.4.Electrochemical measurements

2.4.5.Electrochemical cell

2.5.Results and discussions

2.5.1.Cyclic and square wave voltammogram of Acetylcholine transfer across water/DCE interface

2.5.2.Difierential pulse voltammetry

2.6.Summary

Chapter3:Control release of acetylcholine to stimulate catecholamine exocytosis from rat pheocromocytoma (PC 12) cells

3.1. Introduction

3.1.1.Introduction to catecholamine

3.1.2.The PC 12 cell as a model for studying exocytosis

3.2.Electrochemical methods used to study neurotransmitter release

3.2.1.Carbon fiber amperommetry

3.2.2.Chronoamperometry/Chronocoulometry

3.3.Materials and methods

3.3.1.Solutions

3.3.2.Cell culture

3.3.3.Carbon fiber microelectrode

3.3.4.Electrochemical detection

3.4.Results and discussion

3.5.Summary

Chapter 4:Ion selective detection based on facilitated transfer by propylene carbonate across water/1,2-Dichloroethane interface

4.1.Introduction

4.2.Experimental section

4.2.1.Chemicals

4.2.2.Instrument and electrodes

4.2.3 Electrochemical cell and measurement

4.3.Result and Discussion

4.3.1. Study by Cyclic Voltammogram

4.3.2.Investigation of the possibility of fabrication of ion sensors

4.4.Summary

Concluding remarks and future perspectives

References

Acknowledgments

展开▼

摘要

本论文中,介绍了利用微毛细管支撑的微液/液界面(μlTIES)上的可控离子传输来刺激单个活细胞。
  利用循环伏安法和微分脉冲伏安法研究了乙酰胆碱(ACh+)在水/1,2-二氯乙烷(DCE)构成的液/液界面间的离子转移性质。实验结果表明离子转移峰电流(ip)与乙酰胆碱的浓度呈线性相关,乙酰胆碱浓度的最低检测限为0.01μM。利用扫描速度与乙酰胆碱从水相到油相或从油相到水相离子转移峰电流的关系,计算得到了乙酰胆碱在水相和油相的扩散系数。乙酰胆碱在水相和油相的扩散系数分别为5.3×10-6和2.3×10-6cm2.s-1。
  进一步利用微毛细管支撑的水/1,2-二氯乙烷微液/液界面,通过计时电流法控制乙酰胆碱的离子转移以实现对大鼠肾上腺嗜铬细胞瘤细胞(PC12)的可控刺激。溶于有机溶剂的AChTPB用于实现ACh+到活细胞的转移。当使用1 mM AChTPB对细胞进行刺激时,计算得到ACh+释放的量为15 fmol。同时使用碳纤维微电极上的计时电流法记录细胞受到刺激时的峰电流响应。
  最后利用循环伏安法和微分脉冲伏安法研究了微毛细管支撑的水/1,2-二氯乙烷微液/液界面上PC加速的不同阴阳离子转移反应(阳离子:Na+,K+,Mg2+;阴离子:NO3-,SO42-,CO32-,ClO4-)。良好的离子转移电化学响应被用于计算离子加速转移过程中的一系列热力学参数(扩散系数、标准离子转移吉布斯自由能、半波电势)。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号