首页> 中文学位 >T2紫铜薄板球冠阵列微结构胀形工艺研究
【6h】

T2紫铜薄板球冠阵列微结构胀形工艺研究

代理获取

目录

第1章 绪 论

1.1引言

1.2金属薄板微冲压技术研究意义

1.3金属薄板微冲压工艺国内外研究现状

1.4超声振动辅助微成形国内外研究现状

1.5本文的主要研究目的内容及意义

第2章材料准备及力学性能测试

2.1引言

2.2试样制备及热处理

2.3 T2紫铜单向微拉伸实验

2.4本章小结

第3章T2紫铜薄板微胀形数值模拟分析

3.1引言

3.2 T2紫铜薄板微胀形有限元模型的建立

3.3 T2紫铜薄板微胀形过程分析

3.4模具参数对微胀形数值模拟结果影响分析

3.5材料参数对微胀形数值模拟结果影响分析

3.6本章小结

第4章T2紫铜薄板微胀形实验研究

4.1引言

4.2微胀形件结构分析及实验装置

4.3 T2紫铜薄板微胀形过程分析

4.4微胀形件质量分析

4.5本章小结

第5章T2紫铜薄板超声振动辅助微胀形实验研究

5.1引言

5.2超声振动辅助微胀形实验装置

5.3超声振动辅助软凸模微胀形过程分析

5.4微胀形件质量分析

5.5本章小结

结论

参考文献

声明

致谢

展开▼

摘要

近年来,金属薄板和薄壁零件大量应用在微电子和微机电系统产品中,对微型冲压件的需求量急剧增加。传统的塑性成形设备和工艺方法在微冲压件尺寸更小、结构更复杂、成形质量要求更高时已不能满足需要。随着数值模拟、辅助物理场、新设备、无模或软模成形等技术的发展应用,金属薄板微冲压技术得到快速深入的发展。本文旨在通过单向微拉伸实验获得 T2紫铜薄板力学性能参数,通过数值模拟分析优化工艺方案,采用微胀形工艺成形 T2紫铜薄板球冠阵列微结构件,并通过质量分析等获得最优工艺路线。
  开展 T2紫铜薄板单向微拉伸实验,研究热处理温度、薄板厚度对其力学性能的影响规律。在350~750℃条件下对20~100μm板厚试样分别进行热处理,然后进行微拉伸实验,结果表明,随着热处理温度升高,T2紫铜薄板屈强比先减小后增大,550℃时薄板具有较高的均匀延伸率,塑性变形能力较强;随着板厚的增加,T2紫铜薄板屈强比不断减小,板厚100μm的 T2紫铜薄板在热处理温度550℃时均匀延伸率最大,塑性变形能力较强。
  进行 T2紫铜薄板球冠阵列微结构件微胀形过程数值模拟,研究圆角半径、阵列形状、薄板厚度对微胀形过程影响规律。结果表明,凸凹模倒圆角R0.1可以减小应力集中和最大减薄量,提高塑性变形均匀性;球冠微结构阵列圆心距2.5 mm时,微胀形件球冠微结构阵列侧壁、交汇点、交汇边应力、应变值和板材减薄程度较小;随着板材厚度增加,微胀形件球冠微结构阵列侧壁、交汇点、交汇边处应力、应变值减小。所以对凸凹模加工球冠微结构阵列交汇点、交汇边采用倒圆角R0.1优化处理,微胀形件阵列圆心距采用2.5mm。
  研究 T2紫铜薄板球冠阵列微结构件微胀形变形行为,分析热处理温度、薄板厚度对微胀形影响规律。结果表明,微胀形件侧壁减薄率最大,球冠微结构阵列交汇边减薄率小于阵列交汇点,中心球冠底部减薄率最小;随着热处理温度升高,微胀形件侧壁、球冠微结构阵列交汇点、交汇边、中心球冠底部减薄率先减小后增大,温度较高时壁厚减薄较小、分布较均匀,成形质量更高;随着板材厚度减小,微胀形件侧壁破裂越严重,成形质量降低;热处理温度为550℃、板厚100μm时微胀形件壁厚分布最均匀,成形质量最好;微胀形件侧壁凸模圆角处减薄最严重,热处理温度350℃时凸模圆角处最大减薄率达56.5%。
  开展 T2紫铜薄板球冠阵列微结构件超声振动辅助微胀形实验,研究软模、振动保压时间、薄板厚度对微胀形影响规律。结果表明,超声振动辅助软模微胀形工艺成形球冠微结构阵列贴膜性更好,成形高度提高11.66%,壁厚分布更加均匀,板厚20μm、40μm微胀形件侧壁破裂情况得到改善,显著提高了 T2紫铜薄板的成形极限,质量明显优于传统微胀形工艺。微胀形件在热处理温度550℃、板厚100μm、振动保压时间80s时成形质量最好。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号