首页> 中文学位 >高活性大孔聚(甲基丙烯酸缩水甘油酯-三烯丙基异氰脲酸酯-乙二醇二甲基丙烯酸 酯)微球的制备、表征及其在解脂假丝酵母脂肪酶共价固定化中的应用
【6h】

高活性大孔聚(甲基丙烯酸缩水甘油酯-三烯丙基异氰脲酸酯-乙二醇二甲基丙烯酸 酯)微球的制备、表征及其在解脂假丝酵母脂肪酶共价固定化中的应用

代理获取

目录

文摘

英文文摘

学位论文数据集

ABBREVIATIONS

List of Figure, schemes and tables

List of figures

List of schemes

List of tables

Chapter 1 Introduction: Background and Literature Review

1.1 Suspension polymerization

1.1.1 Advantages of Suspension polymerization

1.1.2 Copolymerization

1.1.3 Physicochemical and Hydrodynamic parameters in suspension copolymerization

1.1.4 Macroporous copolymers

1.1.5 Factors affecting Microspheres size and morphology

1.1.6 Formation of porous structures during suspension polymerization in macroporous polymers

1.2 Effect of synthesis parameters on porous structure

1.2.1. Effect of the porogens

1.2.2. Effect of the crosslinker

1.2.3 .Effect of the temperature and the initiator

1.3 Enzymes

1.3.1 Biocatalysis

1.3.2 Enzyme nomenclature

1.3.3 Lipases: Triacylglycerol-acylhydrolase (3.1.1.3)

1.3.4 Sources of lipases

1.3.5 Industrial applications of lipase

1.3.6 Yarrowia lipolytica lipase: YlLip2

1.3.7 Crystal structure of YlLip2 lipase

1.4 Enzyme Immobilization

1.4.1 Advantages of Immobilized enzymes

1.4.2 Methods of Immobilization

1.4.3 Covalent immobilization:

1.4.4 Using spacer arm between cartier and enzyme

1.5 Research objectives

Chapter 2 Experimental section

2.1 Materials and Reagents

2.2. Physicochemical characterization

2.2.1 Fourier transform infrared spectroscopy (FT-IR)

2.3.2 Scanning electron microscopy (SEM)

2.3.3 Mercury intrusion porosimetry (MIP)

2.3.4 N2 Sorption porosimetry (BET)

2.3.5 Thermo-gravimetric Analysis (TGA)

2.3.6 Measurement of microsphere mechanical stability

2.3.7 Elemental analysis (EA)

2.3.8 Determination of epoxy groups content

2.3.9 Synthesis of microspheres

2.3.10 Preparation of spacer-arm attached poly(GMA-TAIC-EGDMA) microsphere

2.3.11 Activation of copolymer matrix with Glutaradehyde

2.3.12 Immobilization of Yarrowia lipolytica onto spacer-arm attached copolymer microspheres

2.3.13 Protein assay

2.3.14 Activity assays of free and immobilized lipase

2.3.15. Thermal stability measurements of free and immobilized lipase

2.3.16 Operational Stability of the Immobilized Lipase

2.3.17 Procedure for the assay of physically bound lipase

Chapter 3 Synthesis and characterization of reactive macroporous poly(glyeidylmethacrylate-triallylisocyanurate-ethylene glycol dimethacrylate) microspheres by suspension polymerization

3.1 Introduction

3.2. Preparation of copolymer microspheres

3.3 Results and discussion

3.3.1 Synthesis of copolymer microspheres

3.3.2 Effect of stirring rate on microsphere size distribution

3.3.3 FT-IR spectra of the copolymer matrix

3.3.4 Composition and oxirane content of PGMA-TAIC-EGDMA copolymer

3.3.5 Surface morphology and internal structure of the microspheres

3.3.6 Pore volume, pore size and pore size distribution of the microspheres

3.3.7 Surface area of the copolymer microspheres

3.3.8 Comparison of the mechanical and thermal stability of the microspheres

3.4 Conclusions

Chapter 4 Tailoring the Poly(GMA-TAIC-EGDMA) copolymer microspheres of required pore size, porosity and specific surface area

4.1 Introduction

4.2 Synthesis of copolymer microspheres

4.3 Results and discussion

4.3.1 Mechanism of Pore Formation in Macroporous Polymers

4.3.2 Effect of diluent concentration on microspheres porosity and surface area

4.3.3 Effect of cross-linking density on microspheres porosity and surface area

4.4 Conclusions

Chapter 5 Covalent immobilization of Yarrowia lipolytica lipase on the spacer-arm attached Poly(GMA-TAIC-EGDMA) microspheres

5.1 Introduction

5.2 Experimental section

5.2.1 Synthesis of spacer-ann attached poly(GMA-TAIC-EGDMA) microspheres

5.2.2 Procedure for the activation of copolymer matrix with Glutaradehyde

5.2.3 Procedure for the immobilization of Yarrowia lipolytica onto spacer-arm attached copolymer microspheres

5.2.4 Determination of protein assay

5.2.5 Desorption of physically bound lipase

5.2.6 Determination of the activity assays of free and immobilized lipase

5.2.7 Thermal stability measurements of free and immobilized lipase

5.2.8 pH stability measurements of free and immobilized lipase

5.2.9 Operational Stability of the immobilized Lipase

5.3 Results and Discussion

5.3.1 Enzyme Loading

5.3.2 Assessing the amount of covalently immobilized lipase

5.3.3 Immobilization yield and retention of activity

5.3.4 pH profile of the free and immobilized lipase

5.3.5 Temperature profile of the free and immobilized lipase

5.3.6 Thermal stability of the free and immobilized lipase

5.3.7 pH stability of the free and immobilized lipase

5.3.8 Operational stability of the immobilized Y1Lip2 lipase

5.3.9 Storage stability

5.4 Conclusions

Chapter 6 Conclusions and Recommendations for Future work

6.1 Conclusions

6.2 Recommendations for Future work

References

ACKNOWLEDGEMENTS

List of Publications (Published, Accepted and Submitted)

Resume of the Supervisor

Resume of the Author

博士研究生学位论文答辩委员会决议书

展开▼

摘要

大孔聚合物生产微球几乎完全由传统的悬浮聚合工艺完成,其特点是在干燥和溶胀状态下多孔基质不变。此类聚合物在色谱、离子交换、催化剂固定化载体、固相组合和平行合成以及分离纯化中有广泛的应用。目前文献报道比较多的此类共聚物为聚(甲基丙烯酸缩水甘油酯-乙二醇二甲基丙烯酸酯),其活性的环氧基团可以发生后续的修饰反应,从而键合不同的功能化配基。然而,这种共聚物的机械强度、化学稳定性和热稳定性均不是很高。因此,本论文旨在合成一种新型的大孔聚(甲基丙烯酸缩水甘油酯-三烯丙基异氰脲酸酯-乙二醇二甲基丙烯酸酯)共聚物,从而可以扩大介质的应用、弥补传统介质存在的不足。新的介质由于在合成过程中引入三烯丙基异氰脲酸酯为交联剂,其机械强度、耐热性、耐风化和水解能力大大提高。
   脂肪酶(lipase,EC3.1.1.3)是一种特殊的酯键水解酶,活力高、作用底物广,已经被广泛应用于酯的水解、修饰、合成,生物柴油的合成以及手性药物的动力学拆分等,是工业生产中重要的催化剂之一。另外,由于脂肪酶环境友好、可以减少废物排放,因此在合成催化过程中的应用起着重要的作用。然而,脂肪酶的应用方面仍然存在许多挑战和不足,尤其是脂肪酶在生物体外的应用。在外界苛刻的操作条件下,脂肪酶极易变性。提高脂肪酶稳定性的一种解决办法就是将脂肪酶进行固定化,提高脂肪酶的稳定性、酶活力使用寿命,降低生产成本。另外,固定化脂肪酶的应用可以减少酶的分离步骤,简化过程,提高收率。因此,本文合成聚(甲基丙烯酸缩水甘油酯-三烯丙基异氰脲酸酯-乙二醇二甲基丙烯酸酯)微球,用于脂肪酶的共价固定化。
   本论文研究工作主要包括三部分。第一部分通过自由基悬浮聚合反应合成了一种新型的大孔聚(甲基丙烯酸缩水甘油酯-三烯丙基异氰脲酸酯-乙二醇二甲基丙烯酸酯)微球,微球粒径大小可控,并对其物理化学性能进行了表征。实验中利用元素分析法、傅里叶红外光谱法和热重分析法测定的聚合物微球的组成和性能。利用压汞仪和BET吸附法研究了微球的孔容、平均孔径、孔径分布和比表面积,利用扫描电子显微镜观察了微球的微观形貌和内部结构。扫描电子显微镜结果表明微球内部呈现高度网络状的三维孔结构分布。比较聚(甲基丙烯酸缩水甘油酯-三烯丙基异氰脲酸酯-乙二醇二甲基丙烯酸酯)和聚(甲基丙烯酸缩水甘油酯-乙二醇二甲基丙烯酸酯)两种微球,发现前者的热稳定性和机械强度更高。微球表面的环氧活性基团可以用于后续的修饰,键合不同的功能基团,通用性强。
   第二部分系统地研究了交联剂的浓度和致孔剂的用量对介质平均孔径、孔径分布、比表面积和孔容的影响。实验结果表明,合成过程中致孔剂的用量、交联剂的浓度以及功能单体和致孔剂的相比直接是影响介质多孔性能的重要因素。当交联为30%和40%,而稀释剂为75%和100%时,合成的微球具有均匀的微观形貌、机械强度和孔径分布。
   最后一部分介绍了利用大孔聚(甲基丙烯酸缩水甘油酯-三烯丙基异氰脲酸酯-乙二醇二甲基丙烯酸酯)微球共价固定化解脂假丝酵母脂肪酶。微球的环氧乙烷基团首先与乙二胺反应键合胺基,然后用戊二醛进一步活化胺基。最后,利用功能化的微球共价固定化脂肪酶,增加脂肪酶在苛刻条件下的稳定性。固定化后的脂肪酶的固定化效率高达82.3%。固定化酶的最佳使用pH值为8.5,最佳温度为45℃,其热稳定性、pH值适用范围和使用寿命明显优于游离酶。固定化酶重复使用10次后,酶活力仍然为初始酶活力的94.2%。表明这种固定化酶可以应用于各种生物技术应用中。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号