首页> 外文学位 >Long-term rotation with monoculture cover crops increases yield of strawberry, reduces weed populations, and maintains soil chemical, physical, and biological characteristics during strawberry production.
【24h】

Long-term rotation with monoculture cover crops increases yield of strawberry, reduces weed populations, and maintains soil chemical, physical, and biological characteristics during strawberry production.

机译:单作覆盖作物的长期轮作增加了草莓的产量,减少了杂草种群,并在草莓生产过程中保持了土壤的化学,物理和生物学特性。

获取原文
获取原文并翻译 | 示例

摘要

Proliferation of weed seeds and pathogenic organisms in the soil can cause a decline of yield of strawberry grown continuously on the same site. Rotations with cover crops or tillage have been found to mitigate this problem, but data are needed on the relative effectiveness of various potential rotations. Conventional management of weeds and soil pathogens in strawberry can cause detrimental effects to the chemical, physical, and biological components of the soil and subsequently reduces plant vigor. Previous research suggests that rotating cover crops with strawberry reduces weeds and soil pathogens and maintains the chemical, physical and biological components of the soil.;We evaluated soil characteristics of seven monoculture cover crops ( Panicum virgatum L., Andropogon gerardii Vitman, Lolium perenne L., Sorghastrum nutans (L.) Nash, Rudbeckia hirta L., Sorghum bicolor (L.) Moench, and Tagetes erecta L.), continuous tillage, and continuous 'Honeoye' strawberry during treatment establishment and after the rotation of the treatments with strawberry by the chemical, physical, and biological components of the soil. A second objective was to evaluate type and biomass of weeds, density of lesion nematodes, and plant density and yield of strawberry among the rotation of those seven monoculture cover crops, continuous tillage, and continuous 'Honeoye' strawberry plots. Plots were established in 1996 and maintained through 2005. In 2005, treatments were tilled and 'Honeoye' strawberry plants were planted into the plots and were maintained until 2008.;Chemical analyses of the soil showed minimum effects by treatments. During treatment (1996–2005), plots of continuous tillage decreased water infiltration time and bulk density; however soil macro aggregate mass was lowest in plots of continuous tillage. Physical components of the soil were further reduced in the continuous tillage plots during strawberry production (2005–2007). Plots rotated with L. perenne showed high carbon utilization and mineralized nitrogen. Plots rotated with T. erecta reduced overall biological activity in the first year after treatment, but effects were less after the second year of strawberry growth. Plots of continuous tillage showed high microbial richness in the second year of strawberry production; however effects were not different after the third year of production.;Monocot weed biomass was lowest in plots of continuous tillage or rotated with A. gerardii, P. virgatum, S. bicolor, and S. nutans. Dicot weed biomass was lowest in plots of continuous tillage or rotated with S. bicolor. Dicot weed biomass was greatest in plots of continuous strawberry and plots rotated with L. perenne. Lesion nematode counts were below the threshold level for all treatments. Strawberry plant density and yield of strawberry were greatest in plots tilled or rotated with A. gerardii, P. virgatum, S. bicolor, S. nutans, or T. erecta..;Continuous tillage reduced organic carbon and nitrogen in the soil, broke down soil aggregate particles and reduced water infiltration, and showed biological variability in the soil. Plots rotated with A. gerardii, L. perenne, P. virgatum, R. hirta, and S. nutans increased organic carbon and nitrogen, increased macro aggregate mass and water infiltration, and showed maintainable biological activity during strawberry production. In addition, strawberry production areas tilled or rotated with A. gerardii, P. virgatum, S. bicolor, S. nutans, or T. erecta had lower weed biomass and greater plant establishment and yield of strawberry.
机译:土壤中杂草种子和病原生物的扩散会导致在同一地点连续生长的草莓产量下降。已经发现采用轮作作物或耕作的轮作可以减轻这一问题,但是需要有关各种潜在轮作的相对有效性的数据。草莓中杂草和土壤病原体的常规管理方法可能对土壤的化学,物理和生物成分产生有害影响,从而降低植物活力。先前的研究表明,用草莓轮作覆盖作物可减少杂草和土壤病原体,并保持土壤的化学,物理和生物成分。;我们评估了7种单一栽培覆盖作物( Panicum virgatum L。, Andropogon gerardii Vitman,黑麦草 L。,高粱高粱(L。)Nash,黄金菊 L., 双色高粱(L.)Moench和万寿菊由土壤的化学,物理和生物组成。第二个目标是评估这七种单作覆盖作物,连续耕作和连续的“ Honeoye”草莓地块的轮作过程中杂草的类型和生物量,病变线虫的密度以及草莓的植物密度和产量。该地块于1996年建立并一直维持到2005年。在2005年,耕种了所有的农作物,并将“ Honeoye”草莓植株种植到该地块中并维持到2008年。土壤化学分析表明,处理对土壤的影响最小。在处理期间(1996-2005年),连续耕作减少了水的渗透时间和堆积密度。然而,在连续耕作的土壤中,土壤宏观团聚体质量最低。在草莓生产期间(2005–2007),连续耕作区的土壤物理成分进一步减少。用 L旋转的图。 perenne 具有较高的碳利用率和矿化氮。用 T旋转的图。勃起在治疗后的第一年降低了总体生物活性,但草莓生长第二年后的作用却减弱了。连续耕作的田地在草莓生产的第二年显示出很高的微生物丰富度。然而,在生产的第三年后效果没有变化。在连续耕作或使用 A轮作的地块中,单子叶植物杂草的生物量最低。 gerardii,维加斯体育,双色葡萄球菌 S。在连续耕作或与 S轮作的地块中,双子叶植物杂草的生物量最低。 Dicot杂草生物量在连续草莓地和以 L旋转的地中最大。佩雷讷。 病变线虫计数均低于所有治疗的阈值水平。在以<斜体> A耕作或轮作的地块中,草莓植株密度和草莓产量最大。 gerardii,维吉尼亚假单胞菌,双色链霉菌,坚果链霉菌, T。连续耕作减少了土壤中的有机碳和氮,分解了土壤团粒并减少了水的渗透,并显示了土壤的生物变异性。用 A旋转的图。 gerardii,L。perenne,P。virgatum,R。hirta, S。草莓增加了有机碳和氮的含量,增加了大团聚体的质量和水分的渗透,并在草莓生产过程中表现出可维持的生物学活性。此外,草莓产区用 A耕种或旋转。 gerardii,维吉尼亚假单胞菌,双色链霉菌,坚果链霉菌, T。直立植物的杂草生物量较低,草莓的植株和产量较高。

著录项

  • 作者

    Portz, Dennis Nicklas.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Agriculture Agronomy.;Agriculture Horticulture.
  • 学位 M.S.
  • 年度 2008
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号