首页> 外文学位 >Microcavity designs for an indium arsenide/indium phosphide quantum dot fibre-compatible single photon source.
【24h】

Microcavity designs for an indium arsenide/indium phosphide quantum dot fibre-compatible single photon source.

机译:砷化铟/磷化铟量子点光纤兼容单光子源的微腔设计。

获取原文
获取原文并翻译 | 示例

摘要

A source of on-demand single photons for fibre-based quantum information processing applications is highly desirable. To generate single photons at 1.55 mum we use an InAs/InP single quantum dot. Initial measurements to demonstrate the anti-bunched emission from the quantum dot are presented. In order to enhance the emission properties of the quantum dot, it is embedded in a microcavity. A broad variety of micropillar and photonic crystal microcavities are explored in order to find an optimized design to enhance the emission through the Purcell factor. Also, the microcavity output mode has to be suitable to funnel the emitted photons to a communication channel. The microcavity design properties are evaluated by measuring the escaping photons from the embedded high density layer of quantum dots or through complete three-dimensional finite-difference time-domain simulations. A "champion" design using a photonic crystal microcavity is shown to fulfill all the requirements. Record breaking microcavity quality factor (28 000) for an InP-based microcavity is demonstrated. A digital etching technique to tune the photonic crystal microcavity after fabrication is demonstrated. Repetitive removal of an oxide layer formed on the InP with wet chemistry enlarges the photonic crystal holes and reduces the InP layer thickness. Silica nanowire evanescent field coupling is used to probe the mode structure of a microcavity, allowing the extraction of single photons and tuning of the microcavity mode wavelength.
机译:非常需要用于基于光纤的量子信息处理应用的按需单光子源。为了产生1.55微米的单光子,我们使用InAs / InP单量子点。提出了初步的测量结果,以证明量子点的反聚束发射。为了增强量子点的发射特性,将其嵌入微腔中。为了找到优化的设计来增强通过赛尔因子的发射,人们探索了各种各样的微柱和光子晶体微腔。同样,微腔输出模式必须适合将发射的光子漏斗到通信通道。通过测量从嵌入的量子点的高密度层逃逸的光子或通过完整的三维有限差分时域仿真,可以评估微腔设计特性。显示了使用光子晶体微腔的“冠军”设计可以满足所有要求。证明了基于InP的微腔破记录的微腔品质因数(28 000)。演示了一种数字刻蚀技术,可在制造后调整光子晶体的微腔。用湿化学方法重复去除形成在InP上的氧化物层会增大光子晶体孔并减小InP层的厚度。二氧化硅纳米线瞬逝场耦合用于探测微腔的模结构,从而允许提取单光子并调节微腔模式波长。

著录项

  • 作者

    Frederick, Simon.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号