首页> 外文学位 >Distributed and decentralized complex networks: Design, simulation, analysis, and applications.
【24h】

Distributed and decentralized complex networks: Design, simulation, analysis, and applications.

机译:分布式和分散式复杂网络:设计,仿真,分析和应用。

获取原文
获取原文并翻译 | 示例

摘要

Inspired by the modeling of networked systems such as social networks, biological networks, email and Internet, researchers have formulated novel random graph theoretic models, and also proposed distributed stochastic rules or protocols for the creation and management of large-scale networked systems. This new field, involving concepts from statistical physics, computer science, and mathematics has been broadly termed as complex networks. Designer Complex Networks, are then variants of dynamical rules that can be used as the basic protocols for large-scale networks, resulting in the emergence of desired complex networks (e.g., networks with tunable diameter, clustering, and PL exponents), which can then be harnessed to provide global services in a robust fashion. In this work we propose two applications of these complex networks to large scale wireless ad-hoc networks (WANET), and discuss how to guarantee communication among nodes using only a limited number of hops, a quantity we call network latency. On the physical side, reducing network latency imposes a significantly higher power and bandwidth demand on nodes, as is reflected in a set of new bounds. On the protocol front, designing distributed routing protocols that can guarantee the delivery of data packets within a scalable number of hops is a challenging task. We consider two scenarios: (I) Fixed source and destination nodes: A large amount of data is exchanged between a fixed source and one or more fixed destination nodes, and we propose, a near optimal solution based on the small world model. (II) Simultaneous communication among randomly chosen pairs of nodes: where bandwidth and power requirement bounds for random traffic patterns with low latency are computed. In order to design matching protocols, we introduce multi-resolution randomized hierarchy (MRRH), a novel power and bandwidth efficient WANET protocol with scalable network latency. MERE uses a randomized algorithm for building and maintaining a random hierarchical network topology, which together with the proposed routing algorithm can guarantee efficient delivery of data packets in the wireless network. For a network of size N, MRRH can provide an average latency of only O(log3N). The power and bandwidth consumption of MRRH are shown to be nearly optimal for the latency it provides. We will then look at dynamics on designer networks and in particular investigate compensatory mechanisms to prevent intentional attacks on power law networks. Susceptibility of Power-Law (PL) networks to attacks has been traditionally studied in the context of what may be termed as instantaneous attacks, where a randomly selected set of nodes and edges are deleted while the network is kept static. In this work, we shift the focus to the study of progressive and instantaneous attacks on reactive grown and random PL networks, which can respond to attacks and take remedial steps. In the process, we present several techniques that managed networks can adopt to minimize the damages during attacks, and also to efficiently recover from the aftermath of successful attacks. For example, we present (i) compensatory dynamics that minimize the damages inflicted by targeted progressive attacks, such as linear-preferential deletions of nodes in grown PL networks; the resulting dynamic naturally leads to the emergence of networks with PL degree distributions with exponential cutoffs; (ii) distributed healing algorithms that can scale the maximum degree of nodes in a PL network using only local decisions, and (iii) efficient means of creating giant connected components in a PL network that has been fragmented by attacks on a large number of high-degree nodes. Such targeted attacks are considered to be a major vulnerability of PL networks; however, our results show that the introduction of only a small number of random edges, through a reverse percolation process, can restore connectivity, which in turn allows restoration of other topological
机译:在诸如社交网络,生物网络,电子邮件和互联网之类的网络系统建模的启发下,研究人员制定了新颖的随机图理论模型,并提出了用于创建和管理大型网络系统的分布式随机规则或协议。这个涉及统计物理学,计算机科学和数学概念的新领域被广泛称为复杂网络。然后,Designer Complex Networks是动态规则的变体,可以用作大型网络的基本协议,从而导致出现所需的复杂网络(例如,具有可调直径,聚类和PL指数的网络),然后可以可以以强大的方式提供全球服务。在这项工作中,我们提出了将这些复杂网络应用于大规模无线自组织网络(WANET)的两种应用,并讨论了如何仅使用有限的跳数(我们称之为网络延迟)来保证节点之间的通信。从物理方面来看,减少网络等待时间会大大增加节点的电源和带宽需求,这在一组新的限制中已得到体现。在协议方面,设计分布式路由协议以确保在可扩展的跃点数内传递数据包是一项艰巨的任务。我们考虑两种情况:(I)固定的源节点和目标节点:在固定的源节点和一个或多个固定的目标节点之间交换大量数据,并提出了一种基于小世界模型的近乎最佳的解决方案。 (II)随机选择的节点对之间的同时通信:计算具有低等待时间的随机流量模式的带宽和功率要求范围。为了设计匹配协议,我们引入了多分辨率随机分层(MRRH),这是一种具有可扩展的网络延迟的新型功率和带宽高效的WANET协议。 MERE使用随机算法来构建和维护随机分层网络拓扑,该拓扑与所提出的路由算法一起可以确保无线网络中数据包的有效传递。对于大小为N的网络,MRRH可以提供的平均等待时间仅为O(log3N)。对于其提供的等待时间,MRRH的功耗和带宽消耗几乎是最佳的。然后,我们将研究设计者网络的动态,尤其是研究补偿机制,以防止对幂律网络的故意攻击。传统上,在可称为瞬时攻击的上下文中研究了Power-Law(PL)网络对攻击的敏感性,在这种情况下,删除了随机选择的节点和边集,同时网络保持静态。在这项工作中,我们将重点转移到对反应性增长和随机PL网络的渐进和瞬时攻击的研究上,这些攻击可以响应攻击并采取补救措施。在此过程中,我们介绍了受管网络可以采用的几种技术,以最大程度地减少攻击过程中的破坏,并有效地从成功攻击的后果中恢复过来。例如,我们提出(i)补偿动力学,以最大程度地减少有针对性的渐进式攻击(例如增长的PL网络中节点的线性优先删除)所造成的损害;由此产生的动态自然导致具有PL指数分布的PL度分布的网络的出现; (ii)仅使用本地决策即可扩展PL网络中最大节点度的分布式修复算法,以及(iii)在PL网络中创建巨型连接组件的有效方法,该组件已被大量高安全性攻击所破坏度节点。这种有针对性的攻击被认为是PL网络的主要漏洞;但是,我们的结果表明,通过反向渗透过程仅引入少量随机边缘可以恢复连接性,从而可以恢复其他拓扑

著录项

  • 作者

    Attaran Rezaei, Behnam.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号