首页> 外文学位 >Articulated human body deformation from in-vivo three-dimensional image scans.
【24h】

Articulated human body deformation from in-vivo three-dimensional image scans.

机译:来自体内三维图像扫描的明确的人体变形。

获取原文
获取原文并翻译 | 示例

摘要

A system for producing an accurate human body model is important and required in many fields. This study describes a complete system for creating an anatomically accurate 3D human body model from living human scans of a specific person. The method provides accurate and personalized tissue deformation arising from articulated motions of human body regions such as the human hand, probably the most complex articulated region in the human body.;Our system approaches the problem in three stages. First, a person-specific hand model is generated from a single canonically posed palm image of the hand without human guidance. Tensor voting is employed to extract the principal creases on the palmar surface. Joint locations are estimated using extracted features and analysis of surface anatomy. The skin geometry of a generic 3D hand model is deformed using radial basis functions guided by correspondences to the extracted surface anatomy and hand contours. The result is a 3D model of an individual's hand, with similar joint locations, contours, and skin texture.;Second, a parallel skin deformation algorithm is presented suitable for SIMD (Single Instruction Multiple Data) architectures such as GPUs. It presents real-time performance of skin deformation arising from the motion. Joint weights of each vertex are automatically computed and used in skinning algorithms. Skin deformation algorithms for articulated subject such as SSD (Skeletal Subspace Deformation), PSD (Pose Space Deformation), and WPSD (Weighted Pose Space Deformation) are parallelized in SIMD manner and implemented on GPU fragment processors to obtain sufficient speed-up for real-time skin deformation.;Finally, a complete system is developed to create a deformable articulated human body volume from multiple 3D MRI scans of an in vivo human body, which can produce anatomically accurate human volume deformation for articulated body animation. The system combines existing and new techniques that together address the practical issues involved in producing a detailed articulated volume model from scans. These include joint estimation from the actual skeleton, bone volume registration, smooth deformation that preserves the rigidity of the skeleton, and a staged registration process that incorporates a careful initialization as needed to deal with the strong local minima inherent in registering articulated bodies. A locally adaptive non-rigid registration algorithm is developed that greatly reduces the high degrees of freedom and data processing arising in registration of deformable articulated volumes. The registration step establishes a correspondence across scans that permits the last step, interpolation of the scans under intuitive joint control using an example based deformation approach that we extend from the surface to the volume domain.;The result is a volumetric model driven by standard joint control that incorporates detailed deformation based on real data. Visual presentation and quantification of articulated human body model and deformation have potential to contribute many applications such as medical studies of arthritis, bio-mechanics, robotics, ergonomics, medical education, rehabilitation, virtual reality as well as computer graphics and animation.
机译:在许多领域中,用于产生准确的人体模型的系统是重要的并且是必需的。这项研究描述了一个完整的系统,可根据特定人的活人扫描结果创建解剖学上准确的3D人体模型。该方法提供了准确的,个性化的组织变形,该变形是由人体区域(如人的手)(可能是人体中最复杂的关节区域)的关节运动引起的。我们的系统分三个阶段解决了该问题。首先,在没有人工指导的情况下,从手的一个规范姿势的手掌图像生成特定于人的手模型。使用张量投票来提取手掌表面上的主要折痕。使用提取的特征和对表面解剖结构的分析来估计关节位置。通用3D手模型的皮肤几何形状使用径向基函数变形,该径向基函数由与提取的表面解剖结构和手轮廓的对应关系引导。结果是一个人的手的3D模型,具有相似的关节位置,轮廓和皮肤纹理。其次,提出了一种适用于SIMD(单指令多数据)架构(例如GPU)的并行皮肤变形算法。它提供了由运动引起的皮肤变形的实时性能。每个顶点的关节权重是自动计算的,并在蒙皮算法中使用。针对铰接对象的皮肤变形算法(例如SSD(骨骼子空间变形),PSD(姿势空间变形)和WPSD)(加权姿势空间变形))以SIMD方式并行化,并在GPU片段处理器上实现,从而可以为实最后,开发了一个完整的系统,可以根据体内人体的多个3D MRI扫描来创建可变形的关节运动人体体积,从而可以为关节运动的动画生成解剖学上准确的人体体积变形。该系统结合了现有技术和新技术,共同解决了通过扫描生成详细的铰接体积模型所涉及的实际问题。其中包括根据实际骨骼进行的联合估算,骨骼体积配准,保持骨骼刚度的平滑变形以及分阶段的配准过程,该过程在需要时会进行仔细的初始化,以处理配准关节体固有的强烈局部最小值。开发了一种局部自适应的非刚性配准算法,该算法极大地降低了可变形铰接体配准中出现的高度自由度和数据处理。配准步骤建立了跨扫描的对应关系,从而允许最后一步,在直观的关节控制下使用基于示例的变形方法对扫描进行插值,方法是从表面扩展到体积域;结果是由标准关节驱动的体积模型包含基于实际数据的详细变形的控件。关节的人体模型和变形的可视化表示和量化有潜力推动许多应用,例如关节炎,生物力学,机器人技术,人体工程学,医学教育,康复,虚拟现实以及计算机图形和动画的医学研究。

著录项

  • 作者

    Rhee, Taehyun.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号