首页> 外文学位 >Effect of Ion Flux (Dose Rate) in Source-Drain Extension Ion Implantation for 10-nm Node FinFET and Beyond on 300/450mm Platforms
【24h】

Effect of Ion Flux (Dose Rate) in Source-Drain Extension Ion Implantation for 10-nm Node FinFET and Beyond on 300/450mm Platforms

机译:离子通量(剂量率)在10 nm节点FinFET上的源漏扩展离子注入中的作用以及在300 / 450mm平台上的影响

获取原文
获取原文并翻译 | 示例

摘要

The improvement of wafer equipment productivity has been a continuous effort of the semiconductor industry. Higher productivity implies lower product price, which economically drives more demand from the market. This is desired by the semiconductor manufacturing industry. By raising the ion beam current of the ion implanter for 300/450mm platforms, it is possible to increase the throughput of the ion implanter. The resulting dose rate can be comparable to the performance of conventional ion implanters or higher, depending on beam current and beam size. Thus, effects caused by higher dose rate must be investigated further. One of the major applications of ion implantation (I/I) is source-drain extension (SDE) I/I for the silicon FinFET device. This study investigated the dose rate effects on the material properties and device performance of the 10-nm node silicon FinFET. In order to gain better understanding of the dose rate effects, the dose rate study is based on Synopsys Technology CAD (TCAD) process and device simulations that are calibrated and validated using available structural silicon fin samples.;We have successfully shown that the kinetic monte carlo (KMC) I/I simulation can precisely model both the silicon amorphization and the arsenic distribution in the fin by comparing the KMC simulation results with TEM images. The results of the KMC I/I simulation show that at high dose rate more activated arsenic dopants were in the source-drain extension (SDE) region. This finding matches with the increased silicon amorphization caused by the high dose-rate I/I, given that the arsenic atoms could be more easily activated by the solid phase epitaxial regrowth process. This increased silicon amorphization led to not only higher arsenic activation near the spacer edge, but also less arsenic atoms straggling into the channel. Hence, it is possible to improve the throughput of the ion implanter when the dopants are implanted at high dose rate if the same doping level with a lower wafer dose can be achieved. In addition, the leakage current might also be reduced due to less undesired dopants in the channel.;However, the twin defects from the problematic Si{111} recrystallization is well-known to cause excessive leakage current to the FinFET. This drawback can offset the benefits of the high dose rate I/I mentioned above. This work produced the first attempt at simulating the electrical impact of twin defects on advanced-node (10 nm) FinFET device performance. It was found that the high dose-rate I/I causes more twin defects in the silicon fin, and the physical locations of these defects were close to the channel. The defects undesirably induced trap-assisted band-to-band tunneling near the drain, which increased the leakage current. This issue could be mitigated by using asymmetrical gate overlap/underlap design or thicker spacer for SDE I/I so that the twin defects are not located in the depletion region near the drain.
机译:晶片设备生产率的提高一直是半导体工业的不懈努力。更高的生产率意味着更低的产品价格,这从经济上推动了市场需求的增长。这是半导体制造行业所期望的。通过提高300 / 450mm平台上离子注入机的离子束电流,可以增加离子注入机的生产量。取决于束电流和束大小,所得的剂量率可以与常规离子注入机的性能相当或更高。因此,必须进一步研究较高剂量率引起的影响。离子注入(I / I)的主要应用之一是硅FinFET器件的源漏扩展(SDE)I / I。这项研究调查了剂量率对10nm节点硅FinFET的材料特性和器件性能的影响。为了更好地了解剂量率效应,剂量率研究基于Synopsys Technology CAD(TCAD)工艺和设备仿真,并使用可用的结构化硅鳍片样品进行了校准和验证。通过将KMC模拟结果与TEM图像进行比较,carlo(KMC)I / I模拟可以精确地模拟鳍中的硅非晶化和砷分布。 KMC I / I仿真的结果表明,在高剂量率下,更多的活化砷掺杂剂位于源漏扩展(SDE)区域。这一发现与高剂量率I / I导致的硅非晶化程度提高相吻合,因为砷原子可以更容易地被固相外延再生过程激活。硅非晶化程度的提高不仅导致隔离物边缘附近的砷活化程度更高,而且导致散布到沟道中的砷原子减少。因此,如果可以以较低的晶片剂量实现相同的掺杂水平,则当以高剂量率注入掺杂剂时,可以提高离子注入机的生产率。另外,由于沟道中较少的不希望有的掺杂物,漏电流也可以减少。然而,众所周知,有问题的Si {111}重结晶引起的孪生缺陷会导致流向FinFET的漏电流过大。该缺点可以抵消上述高剂量率I / I的好处。这项工作首次尝试了模拟双缺陷对先进节点(10 nm)FinFET器件性能的电气影响。发现高剂量率I / I在硅鳍中引起更多的孪晶缺陷,并且这些缺陷的物理位置靠近沟道。缺陷不希望地在漏极附近引起陷阱辅助的带间隧穿,从而增加了泄漏电流。通过为SDE I / I使用不对称的栅极重叠/下重叠设计或较厚的垫片,可以减轻此问题,从而使双缺陷不在漏极附近的耗尽区中。

著录项

  • 作者

    Shen, Ming-Yi.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Nanotechnology.;Materials science.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号