首页> 外文学位 >Experimental and theoretical control of a smart projectile fin using piezoelectric bimorph actuator.
【24h】

Experimental and theoretical control of a smart projectile fin using piezoelectric bimorph actuator.

机译:使用压电双压电晶片执行器控制智能弹丸的实验和理论控制。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this work is to develop efficient control algorithms for the control of a smart projectile fin. Smart fins are deployed as soon as the projectile reaches the apogee and are used to steer the projectile towards its target by controlling the rotation angle of the fin. The fin is actuated using the piezoelectric macro-fiber composite (MFC) bimorph actuator which is completely enclosed within the aero-shell. The actuator is composed of two Macro Fiber Composites (MFC's), manufactured by Smart Material Co. The presented smart fin design minimizes the volume and weight of the unit.;Two different models of the smart fin are developed. One is mathematical model that uses finite element approach to describe dynamics of the smart fin system. This model includes the aerodynamic moment which is a function of the angle of attack of the projectile. Second model is based on system identification approach. A linear model of the actuator and fin is identified experimentally by exciting the system using a chirp signal. Comparison is done between these two models based on open-loop step response of the smart fin system.;In this dissertation, five kinds of control systems based on fuzzy logic, inverse dynamics and adaptive structure theory are developed. The aerodynamic disturbances and parameter uncertainties are considered in these controllers. The simulation results illustrate that asymptotic trajectory tracking of the fin angle is achieved, in spite of uncertainties in the system parameters and presence of aerodynamic disturbance. A prototype model of the projectile fin is developed in the laboratory for real-time control. The designed controllers are validated using the subsonic wind tunnel at University of Nevada, Las Vegas (UNLV) for various wind speeds. Experimental results show that the designed controllers accomplish fin angle control.
机译:这项工作的目的是开发用于控制智能弹丸的高效控制算法。一旦弹丸到达顶点,就会部署智能鳍,并通过控制鳍的旋转角度来将弹丸引向目标。散热片是使用压电大纤维复合材料(MFC)双压电晶片执行器来执行的,该执行器完全封闭在航空器壳体内。执行器由Smart Material Co.制造的两个Macro Macro Composites(MFC's)组成。提出的智能散热片设计最大程度地减小了单元的体积和重量。;开发了两种不同型号的Smart fin。一种是使用有限元方法描述智能鳍系统动力学的数学模型。该模型包括空气动力学力矩,该力矩是弹丸攻角的函数。第二种模型基于系统识别方法。通过使用线性调频信号激励系统,可以通过实验确定执行机构和散热片的线性模型。基于智能鳍系统的开环阶跃响应,对这两种模型进行了比较。本文研究了基于模糊逻辑,逆动力学和自适应结构理论的五种控制系统。在这些控制器中考虑了空气动力学干扰和参数不确定性。仿真结果表明,尽管系统参数存在不确定性,并且存在空气动力学干扰,但仍可以实现鳍角的渐近轨迹跟踪。在实验室中开发了射弹鳍的原型模型,用于实时控制。所设计的控制器已使用拉斯维加斯内华达大学(UNLV)的亚音速风洞针对各种风速进行了验证。实验结果表明,所设计的控制器完成了鳍角控制。

著录项

  • 作者

    Mudupu, Venkat R.;

  • 作者单位

    University of Nevada, Las Vegas.;

  • 授予单位 University of Nevada, Las Vegas.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号