首页> 外文学位 >Watching the world sweat: Development and utilization of an in-situ conductivity sensor for monitoring chloride dynamics in high temperature hydrothermal fluids at divergent plate boundaries.
【24h】

Watching the world sweat: Development and utilization of an in-situ conductivity sensor for monitoring chloride dynamics in high temperature hydrothermal fluids at divergent plate boundaries.

机译:观察全世界的汗水:开发和利用一种原位电导率传感器来监测发散板边界处高温热液中氯化物的动力学。

获取原文
获取原文并翻译 | 示例

摘要

The magmatic upwelling that drives plate tectonic motion at divergent plate boundaries also heats seawater circulating within the Earth's crust. The seawater undergoes physical and chemical changes beneath the surface and the resulting buoyant hydrothermal fluid ascends to the seafloor where it is comes out of structures called hydrothermal vents. One subsurface process of particular interest is phase separation, which is the transformation of a homogenous fluid into two phases, each with properties different from the original fluid. Phase separation is the dominant control on chloride in hydrothermal systems and chloride controls the distribution of all other chemical species. Thus, the measurement of chloride in hydrothermal fluids gives insight into extreme subsurface processes that are inherently difficult to probe. Since these processes evolve with time, measurements must be taken on a continuous basis. The research presented herein discusses the development and utilization of an instrument capable of continuously monitoring the hot salty solutions that flow out of hydrothermal pores in the Earth's crust. Instruments were deployed at two different mid-ocean ridge hydrothermal systems. An array of instruments was deployed on the Juan de Fuca Ridge at the Main Endeavour Field 12-15 months after a magmatic intrusion. Tidal changes and non-tidal changes on timescales of minutes to hours were observed. Chloride data were also used to infer subsurface mixing between two non-seawater fluids at depths below the seafloor between 486 and 695 meters.;Another instrument was deployed at Bio 9' vent at 9°50'N on the East Pacific Rise in the immediate vicinity of seismometers monitoring earthquake activity. The hydrothermal response to intense seismicity was observed on two separate occasions. On the basis of these observations, conditions of subsurface phase separation were estimated at pressures between 269 and 288 bars and temperatures between 369.7 and 403.5°C. Recurrent chloride spikes were also observed, with magnitudes up to 720 mmol/kg and durations up to 7 minutes. At both study sites, data indicate the influence of subsurface fluids with chloride concentrations greater than seawater. These observations may help resolve the apparent chloride deficit indicated by venting of chloride-depleted fluids over decadal timescales.
机译:导致板块构造在不同板块边界运动的岩浆上升流也加热了地壳内循环的海水。海水在表层以下发生物理和化学变化,产生的漂浮性热液上升到海底,从称为热液喷口的结构中出来。特别关注的一个地下过程是相分离,即将均质流体转化为两相,每个相的性质都不同于原始流体。相分离是热液系统中氯化物的主要控制因素,氯化物控制所有其他化学物质的分布。因此,对热液中氯化物的测量可以洞悉固有的难以探测的极端地下过程。由于这些过程会随着时间而变化,因此必须连续进行测量。本文介绍的研究讨论了一种仪器的开发和利用,该仪器能够连续监测从地壳中的热液孔流出的热盐溶液。仪器被部署在两个不同的洋中脊热液系统中。岩浆侵入后的12-15个月,在主要奋进地带的胡安·德·富卡山脊上部署了一系列仪器。在几分钟到几小时的时间尺度上观察到潮汐变化和非潮汐变化。氯化物数据还被用于推断海底以下486至695米之间的两种非海水流体之间的地下混合。;另一台仪器被部署在东太平洋上升沿9°50'N的Bio 9'出口处监测地震活动的地震仪附近。在两个不同的情况下观察到了对强烈地震活动的热液响应。基于这些观察结果,估计了在269至288巴之间的压力和369.7至403.5°C之间的温度下的地下相分离条件。还观察到了反复出现的氯化物峰值,强度最高为720 mmol / kg,持续时间最长为7分钟。在这两个研究地点,数据表明氯化物浓度大于海水的地下流体的影响。这些观察结果可能有助于解决由氯化物耗尽的液体在十年时间尺度上的排出所指示的明显的氯化物缺乏。

著录项

  • 作者

    Larson, Benjamin Isaac.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Marine and Ocean.;Geochemistry.;Remote Sensing.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋工程;遥感技术;地质学;
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号