首页> 外文学位 >Quantifying anisotropy in asphalt concrete pavements using an ultrasonic method.
【24h】

Quantifying anisotropy in asphalt concrete pavements using an ultrasonic method.

机译:使用超声方法量化沥青混凝土路面的各向异性。

获取原文
获取原文并翻译 | 示例

摘要

Asphalt concrete is a bonded granular material whose internal structure is anisotropic. Such anisotropy is due to anisotropic particles and void's structure, particle distribution and orientation, and restrain and force pattern used during compaction. Even with this knowledge asphalt concrete design is made considering asphalt concrete as an isotropic material. The biggest difference between an isotropic and anisotropic material is that, an isotropic material is characterized by two independent constants and an anisotropic material could be characterized by up to 81 constants. An extensive research to characterize and quantify anisotropy is only available for some composite materials. Based on the literature review, further study is necessary in the area of asphalt concrete pavements.;This study used an Ultrasonic Method to quantify anisotropy of asphalt concrete pavements (ACP). The method consisted of sending ultrasonic waves through asphalt specimens to measure the transit times in different directions, both in shear and compression. These transit times were used to calculate the velocities of propagation that were converted to the constants needed to fully characterize a transversely isotropic material.;A total of 45 specimens were tested. The experimental matrix consisted of three materials from three different quarries in El Paso (granite), San Antonio (soft limestone) and Brownwood (hard limestone). The specimens were then broken down into three different mixes; Superpave, CMHB, and PFC.;The Ultrasonic Method proved to be efficient in characterizing and quantifying the anisotropy of asphalt concrete specimens. It was shown that it was possible to obtain the five elastic constants for this type of material. The method was further validated by comparing the elastic constants obtained with the moduli determined using a V-Meter and a free-free resonant column device. The system worked well for the Superpave and the CMHB mixes. The coupling of the ultrasonic energy to the PFC samples was rather difficult.;The modulus values calculated by the Ultrasonic Method proposed in this study followed the same pattern of those calculated by the FREE-FREE. The highest modulus pertained to the SASuperpave and CMHB specimens. Followed by the BW Superpave and CMHB and the one with the lowest modulus was the EP-Superpave and CMHB. When in comparison to the V-meter and the FREE-FREE the values provided by the new Ultrasonic Method were found in between the high values of the V-meter and the low values of the FREE-FREE. This could be observed for all the three materials and the two different mixes.;The values for the EP-Superpave specimens varied from 13 to 15 GPa for E1, 21 to 30 GPa for E2, 7 to 8 GPa for G12, 9 to 14 GPa for G23, 0.31 to 0.43 for V12, and 0.03 to 0.09 for V23. The values for the EP-CMHB specimens varied from 12 to 17 GPa for E1, 22 to 29 GPa for E2, 6 to 10 GPa for G 12, 10 to 14 GPa for G23, 0.27 to 0.40 for V12, and 0.01 to 0.09 for V23. The values for the BW-Superpave specimens varied from 15 to 22 GPa for E1, 12 to 34 GPa for E2, 4 to 11 GPa for G12, 5 to 17 GPa for G23, 0.29 to 0.38 for V12, and 0.01 to 0.15 for V23. The values for the BW-CMHB specimens varied from 18 to 25 GPa for E1, 25 to 34 GPa for E2, 7 to 8 GPa for G12, 12 to 16GPa for G 23, 0.24 to 0.36 for V12, and 0.05 to 0.09 for V23. The values for the SA-Superpave specimens varied from 16 to 26 GPa for E 1, 23 to 35 GPa for E2, 7 to 8 GPa for G12, 12 to 17 GPa for G23, 0.20 to 0.39 for V12, and 0.01 to 0.03 for V23. The values for the SA-CMHB specimens varied from 17 to 28 GPa for E1, 18 to 28 GPa for E2, 8 to 17 GPa for G12, 10 to 15 GPa for G23, 0.27 to 0.42 for V 12, and 0.01 to 0.09 for V23.
机译:沥青混凝土是一种粘结的粒状材料,其内部结构是各向异性的。这种各向异性是由于各向异性的颗粒和空隙的结构,颗粒的分布和取向以及压实过程中使用的约束力模型和力模型引起的。即使有了这些知识,也可以将沥青混凝土视为各向同性材料来进行沥青混凝土设计。各向同性和各向异性材料之间的最大区别在于,各向同性材料的特征在于两个独立的常数,而各向异性材料的特征在于多达81个常数。表征和量化各向异性的广泛研究仅适用于某些复合材料。基于文献综述,需要对沥青混凝土路面领域进行进一步的研究。本研究采用超声方法量化沥青混凝土路面的各向异性。该方法包括通过沥青样本发送超声波,以测量剪切和压缩过程中不同方向的传播时间。这些传播时间用于计算传播速度,并转换为完全表征横向各向同性材料所需的常数。总共测试了45个样品。实验基质由El Paso(花岗岩),San Antonio(软石灰石)和Brownwood(硬石灰石)三个采石场的三种材料组成。然后将样品分成三种不同的混合物。 Superpave,CMHB和PFC 。;超声波方法被证明可有效地表征和定量沥青混凝土标本的各向异性。结果表明,对于这种类型的材料可以获得五个弹性常数。通过将获得的弹性常数与使用V-Meter和自由-自由共振柱装置确定的模量进行比较,进一步验证了该方法。该系统适用于Superpave和CMHB混合料。超声能量与PFC样品的耦合相当困难。通过本研究中提出的超声方法计算出的模量值遵循与自由自由计算出的模量值相同的模式。最高模量属于SASuperpave和CMHB标本。其次是BW Superpave和CMHB,模量最低的是EP-Superpave和CMHB。与V-meter和FREE-FREE相比,新的超声波方法提供的值介于V-meter的高值和FREE-FREE的低值之间。三种材料以及两种不同的混合物均可观察到; EP-Superpave试样的值从E1的13至15 GPa,E2的21至30 GPa,G12的7至8 GPa,9至14不等。 G23的GPa,V12的0.31至0.43和V23的0.03至0.09。 EP-CMHB样品的值范围从E1的12至17 GPa,E2的22至29 GPa,G 12的6至10 GPa,G23的10至14 GPa,V12的0.27至0.40和0.01至0.09 V23。 BW-Superpave试样的值从E1的15至22 GPa,E2的12至34 GPa,G12的4至11 GPa,G23的5至17 GPa,V12的0.29至0.38和V23的0.01至0.15不等。 。 BW-CMHB样品的值从E1的18至25 GPa,E2的25至34 GPa,G12的7至8 GPa,G 23的12至16GPa,V12的0.24至0.36和V23的0.05至0.09不等。 SA-Superpave标本的值从E的16至26 GPa,E2的23至35 GPa,G12的7至8 GPa,G23的12至17 GPa,V12的0.20至0.39和0.01至0.03不等。 V23。 SA-CMHB样品的值从E1的17到28 GPa,E2的18到28 GPa,G12的8到17 GPa,G23的10到15 GPa,V 12的0.27到0.42、0.01的0.09变V23。

著录项

  • 作者

    Jurado, Monica C.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Engineering Civil.
  • 学位 M.S.
  • 年度 2008
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号