首页> 外文学位 >Multidimensional modeling of solid propellant burning rates and aluminum agglomeration and one-dimensional modeling of RDX/GAP and AP/HTPB.
【24h】

Multidimensional modeling of solid propellant burning rates and aluminum agglomeration and one-dimensional modeling of RDX/GAP and AP/HTPB.

机译:固体推进剂燃烧速率和铝团块的多维建模以及RDX / GAP和AP / HTPB的一维建模。

获取原文
获取原文并翻译 | 示例

摘要

This document details original numerical studies performed by the author pertaining to solid propellant combustion. Detailed kinetic mechanisms have been utilized to model the combustion of the pseudo-propellants RDX/GAP and AP/HTPB. A particle packing model and a diffusion flame model have been utilized to develop a burning rate and an aluminum agglomeration model.;The numerical model for RDX/GAP combustion utilizes a "universal" gas-phase kinetic mechanism previously applied to combustion models of several monopropellants and pseudo-propellants. The kinetic mechanism consists of 83 species and 530 reactions. Numerical results using this mechanism provide excellent agreement with RDX and GAP burning rate data, and agree qualitatively with RDX/GAP pseudo-propellant data.;The numerical model for AP/HTPB combustion utilizes the same universal mechanism, with chlorine reactions added for modeling AP combustion. Including chlorine, there are 106 species and 611 reactions. Global condensed-phase reactions have been developed for six AP percentages between 59% and 80% AP. The AP/HTPB model accurately predicts burning rates, as well as temperature and species profiles.;The numerical burning rate model utilizes a three-dimensional particle-packing model to generate cylindrical particle packs. Particle-size distributions have been modeled using a three-parameter lognormal distribution function. Pressure-dependent homogenization has been used to capture pressure effects and reduce cpu time. A "characteristic" burning path is found through each particle pack. Numerical results showed that different path-finding approaches work better depending on the propellant formulation and combustion conditions. Proposed future work and modifications to the present model are suggested.;The numerical agglomeration model utilizes the same particle packing model and particle-size distribution function as in the burning rate model. Three preliminary models have been developed examining the ideas of pockets, separation distance, and aluminum ignition. Preliminary model results indicate the importance of predicting aluminum particle ignition. In the final model, the surface is regressed numerically through each particle pack. At each surface location, calculations are performed to determine whether aluminum particles combine and/or ignite. Ignition criteria have been developed from the results of the diffusion flame model and an analysis of particle-pack cross-sections. Numerical results show qualitative agreement with each experimentally observed trend. Proposed future work and modifications to the present model are suggested.
机译:该文件详细介绍了作者进行的有关固体推进剂燃烧的原始数值研究。详细的动力学机制已被用来模拟假推进剂RDX / GAP和AP / HTPB的燃烧。已经利用颗粒堆积模型和扩散火焰模型来发展燃烧速率和铝团聚模型。RDX / GAP燃烧的数值模型利用了以前应用于几种单一推进剂燃烧模型的“通用”气相动力学机理。和伪推进剂。动力学机理包括83种和530个反应。使用该机制的数值结果与RDX和GAP燃烧速率数据非常吻合,并且与RDX / GAP假推进剂数据定性吻合。AP / HTPB燃烧的数值模型使用相同的通用机制,并添加了氯反应来建模AP燃烧。包括氯在内,共有106种和611种反应。已开发出全球冷凝阶段反应,用于在59%到80%AP之间的六个AP百分比。 AP / HTPB模型可以准确地预测燃烧速率以及温度和物种分布。数字燃烧速率模型利用三维颗粒堆积模型生成圆柱形颗粒堆积。粒度分布已使用三参数对数正态分布函数建模。压力相关的均质化已用于捕获压力影响并减少cpu时间。在每个粒子包中都发现了“特征”燃烧路径。数值结果表明,根据推进剂配方和燃烧条件,不同的寻路方法效果更好。提出了未来的工作和对本模型的修改。数值集聚模型利用了与燃烧速率模型相同的颗粒堆积模型和粒度分布函数。已经开发了三个初步模型,以检查气穴,分隔距离和铝点火的概念。初步的模型结果表明预测铝颗粒着火的重要性。在最终模型中,通过每个粒子包对表面进行数值回归。在每个表面位置,进行计算以确定铝颗粒是否结合和/或点燃。从扩散火焰模型的结果和对颗粒堆积横截面的分析中得出了点火标准。数值结果表明,每个实验观察到的趋势在质量上都一致。建议未来的工作和对本模型的修改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号