首页> 外文学位 >Viscoelastic FE modeling of asphalt pavements and its application to U.S. 30 perpetual pavement.
【24h】

Viscoelastic FE modeling of asphalt pavements and its application to U.S. 30 perpetual pavement.

机译:沥青路面的粘弹性有限元建模及其在美国30永久路面中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The primary objective of this research consisted of incorporating laboratory-determined viscoelastic material properties into a three-dimensional finite element model to accurately simulate the behavior of a perpetual pavement structure subjected to vehicular loading at different pavement temperatures and vehicular speeds. With this finite element model, statistical models that were based on Falling Weight Deflectometer testing were developed to predict the structural response of a perpetual pavement.;In this research, the dynamic modulus test was chosen to determine viscoelastic properties of hot-mix-asphalt materials in the laboratory. A 5-term Prony series was used to describe the viscoelastic behavior of hot-mix-asphalt materials. Resilient modulus tests were performed to measure resilient moduli of hot-mix-asphalt mixtures and subgrade soils. All these laboratory-determined material properties were inputted into the developed viscoelastic finite element model to predict pavement response.;The developed viscoelastic finite element model was validated by and calibrated to field-measured pavement responses collected at the U.S. 30 perpetual pavement constructed in Wayne County, Ohio. The results demonstrated that the developed viscoelastic finite element model can predict pavement responses accurately. Parametric studies revealed that the developed viscoelastic finite element model performed better in pavement thickness design compared with perpetual-pavement-design-oriented software PerRoad which underestimated pavement responses. Layer modulus variation did not affect pavement response significantly. The ratio maximum-tensile-strain/load was independent of the axle load. The ratio maximum-tensile-strain/speed increased with decreasing in vehicular speeds. A nomograph was developed to correlate the maximum tensile strain to the pavement temperature depending on the thickness of the ODOT302 layer and the aggregate base.;Finally, the developed finite element model was tailored to work for Falling Weight Deflectometer tests. Statistical models were developed to estimate pavement response using the Falling Weight Deflectometer upon the completion of a perpetual pavement. These models are important in practice to assess pavement quality using the Falling Weight Deflectometer.;Outcomes of this research are significantly important to improve the accuracy of current design and analysis methods which are widely used in predicting pavement responses and to provide practical guidelines for perpetual pavement design and analysis.
机译:这项研究的主要目的是将实验室确定的粘弹性材料特性纳入三维有限元模型中,以准确模拟在不同路面温度和车速下承受车辆荷载的永久路面结构的行为。利用该有限元模型,开发了基于落锤挠度计测试的统计模型来预测永久性路面的结构响应。在本研究中,选择了动态模量测试来确定热拌沥青材料的粘弹性。在实验室里。使用5项Prony系列描述热混沥青材料的粘弹性行为。进行弹性模量测试以测量热拌沥青混合料和路基土壤的弹性模量。所有这些实验室确定的材料特性都输入到已开发的粘弹性有限元模型中,以预测路面响应。;已开发的粘弹性有限元模型已通过在Wayne County建造的美国30座永久性路面上收集的现场测量的路面响应进行了验证和校准。 ,俄亥俄州。结果表明,所建立的粘弹性有限元模型可以准确预测路面响应。参数研究表明,与永久性路面设计导向软件PerRoad相比,开发的粘弹性有限元模型在路面厚度设计中表现更好,后者低估了路面响应。层模量变化不会显着影响路面响应。最大拉伸应变/负载比与车轴负载无关。最大拉伸应变/速度之比随着车速的降低而增加。开发了诺模图,以根据ODOT302层和骨料基层的厚度将最大拉伸应变与路面温度相关联;最后,开发的有限元模型适合用于落锤挠度计测试。开发了统计模型,以在永久性路面完工时使用落锤挠度计估算路面响应。这些模型在实践中对使用落锤挠度计评估路面质量非常重要。这项研究的结果对于提高目前广泛用于预测路面响应的设计和分析方法的准确性以及为永续路面提供实用指南具有重要意义。设计和分析。

著录项

  • 作者

    Liao, Yun.;

  • 作者单位

    Ohio University.;

  • 授予单位 Ohio University.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

  • 入库时间 2022-08-17 11:39:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号