首页> 外文学位 >Analysis of multi-channel microscopy: Spectral self-interference, multi-detector confocal and 4Pi systems.
【24h】

Analysis of multi-channel microscopy: Spectral self-interference, multi-detector confocal and 4Pi systems.

机译:多通道显微镜分析:光谱自干扰,多探测器共聚焦和4Pi系统。

获取原文
获取原文并翻译 | 示例

摘要

Fluorescence microscopy is an important and ubiquitous tool in biological imaging due to the high specificity with which fluorescent molecules can be attached to an organism and the subsequent nondestructive in-vivo imaging allowed. Focused-light microscopies allow three-dimensional fluorescence imaging but their resolution is restricted by diffraction. This effect is particularly limiting in the axial dimension as the diffraction-limited focal volume produced by a lens is more extensive along the optical axis than perpendicular to it. Approaches such as confocal microscopy and 4Pi microscopy have been developed to improve the axial resolution. Spectral Self-Interference Fluorescence Microscopy (SSFM) is another high-axial-resolution technique and is the principal subject of this dissertation. Nanometer-precision localization of a single fluorescent layer has been demonstrated using SSFM. This accuracy compares favorably with the axial resolutions given by confocal and 4Pi systems at similar operating parameters (these resolutions are approximately 350nm and 80nm respectively).; This theoretical work analyzes the expected performance of the SSFM system when imaging a general object, i.e. an arbitrary fluorophore density function rather than a single layer. An existing model of SSFM is used in simulations to characterize the system's resolution. Several statistically-based reconstruction methods are applied to show that the expected resolution for SSFM is similar to 4Pi microscopy for a general object but does give very high localization accuracy when the object is known to consist of a limited number of layers. SSFM is then analyzed in a linear systems framework and shown to have strong connections, both physically and mathematically, to a multi-channel 4Pi microscope. Fourier-domain analysis confirms that SSFM cannot be expected to outperform this multi-channel 4Pi instrument. Differences between the channels in spatial-scanning, multi-channel microscopies are then exploited to show that such instruments can operate at a sub-Nyquist scanning rate but still produce images largely free of aliasing effects. Multi-channel analysis is also used to show how light typically discarded in confocal and 4Pi systems can be collected and usefully incorporated into the measured image.
机译:荧光显微镜是生物成像中重要且普遍使用的工具,这是因为荧光分子可以高度附着于生物体并允许随后的非破坏性体内成像。聚焦光显微镜可以进行三维荧光成像,但其分辨率受到衍射的限制。该效果在轴向尺寸上特别受限制,因为由透镜产生的受衍射限制的焦距沿光轴的范围比垂直于光轴的范围大。已经开发出诸如共聚焦显微镜和4Pi显微镜的方法来改善轴向分辨率。光谱自干涉荧光显微镜(SSFM)是另一种高轴分辨率技术,是本论文的主要主题。使用SSFM已经证明了单个荧光层的纳米精度定位。该精度与共焦和4Pi系统在类似的工作参数下给出的轴向分辨率(这些分辨率分别约为350nm和80nm)相比具有优势。这项理论工作分析了对通用物体(即任意荧光团密度函数而不是单层物体)成像时SSFM系统的预期性能。仿真中使用了现有的SSFM模型来表征系统的分辨率。应用了几种基于统计的重建方法,以显示SSFM的预期分辨率类似于普通对象的4Pi显微镜,但是当已知对象由有限数量的层组成时,确实提供了很高的定位精度。然后,在线性系统框架中对SSFM进行了分析,结果表明该SSFM与多通道4Pi显微镜在物理和数学上都有很强的联系。傅立叶域分析证实,不能期望SSFM胜过这种多通道4Pi仪器。然后,利用空间扫描,多通道显微检查中通道之间的差异来显示此类仪器可以在奈奎斯特扫描速率下工作,但仍可产生基本上没有混叠效果的图像。多通道分析还用于显示如何收集通常在共焦和4Pi系统中丢弃的光并将其有效地合并到测量的图像中。

著录项

  • 作者

    Davis, Brynmor J.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Physics Optics.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号