首页> 外文学位 >Thermal transport in the advanced engineered materials and silicon-on-insulator field-effect transistors.
【24h】

Thermal transport in the advanced engineered materials and silicon-on-insulator field-effect transistors.

机译:先进工程材料和绝缘体上硅场效应晶体管的热传输。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents the experimental and theoretical investigation of thermal transport in the advanced engineered materials for thermal management of nanoscale devices. Heat dissipation in downscaled transistors became a major challenge for the high-performance microprocessors. It is important to understand the specifics of heat propagation in the nanostructured and disordered materials proposed for the use in the next generation of integrated circuits. The materials studied in this dissertation include epitaxially grown Ge/Si quantum dot superlattices (QDS), diamond-like carbon (DLC) thin films, undoped and nitrogen-doped nanocrystalline diamond (NCD) films. Thermal transport through silicon-on-insulator (SOI), poly-Si and silicide, as well as thermal crosstalk in SOI-based transistors have also been investigated. The thermal conductivity measurements presented in this dissertation have been performed in the temperature range from 10 K to 400 K using the 3o technique. The results show that the thermal conductivity in Ge/Si QDS can be reduced by ∼90% from its bulk value. While such reduction is desirable for the applications in the solid-state micro-cooling and thermoelectric energy conversion it is detrimental in conventional electronic devices. A comprehensive thermal study has been carried out for DLC films with a broad range of structural parameters, H content and thicknesses. The obtained results show that in DLC films, both the amount of sp3 and sp2 phases as well as their ordering play an important role in defining thermal conduction. In NCD films, the grain boundaries and the grain size radically affect the phonon conduction. Nitrogen incorporation affects the phonon transport both, directly through Rayleigh scattering and, indirectly, by changing the grain boundary, size and geometry. The experimental results obtained for Si/Ge QDS and nanocrystalline diamond films have been explained with the help of the phonon-hopping model. The effect of the material properties on thermal cross-talk has been investigated both experimentally and numerically on the example of the field-effect transistors implemented on SOI substrates. It was discovered that the thermal crosstalk is surprisingly high even for devices with the shallow-trench isolation (STI) structure. This effect has been explained with the help of the finite-elements calculations, which indicated heat shunting of STI through the substrate.
机译:本文提出了用于纳米器件热管理的先进工程材料中热传输的实验和理论研究。小型晶体管的散热成为高性能微处理器的主要挑战。重要的是要了解建议用于下一代集成电路的纳米结构和无序材料中传热的细节。本文研究的材料包括外延生长的Ge / Si量子点超晶格(QDS),类金刚石碳(DLC)薄膜,未掺杂和氮掺杂的纳米晶金刚石(NCD)薄膜。还研究了通过绝缘体上硅(SOI),多晶硅和硅化物的热传输以及基于SOI的晶体管中的热串扰。本文使用3o技术在10 K至400 K的温度范围内进行了热导率测量。结果表明,Ge / Si QDS的热导率可从其体积值降低约90%。尽管这种减少对于固态微冷却和热电能量转换中的应用是期望的,但是在常规电子设备中是有害的。已经对具有各种结构参数,H含量和厚度的DLC膜进行了全面的热研究。获得的结果表明,在DLC膜中,sp3和sp2相的数量及其有序性在定义热传导中起着重要作用。在NCD膜中,晶界和晶粒尺寸从根本上影响声子的传导。氮的掺入既通过瑞利散射直接影响声子的传输,又通过改变晶界,大小和几何形状间接影响声子的传输。 Si / Ge QDS和纳米晶金刚石薄膜的实验结果已经通过声子跳跃模型得到了解释。在SOI衬底上实现的场效应晶体管的例子中,已经通过实验和数值研究了材料特性对热串扰的影响。发现即使对于具有浅沟槽隔离(STI)结构的器件,热串扰也令人惊讶地高。已经借助有限元计算来解释了这种影响,该计算表明STI通过基板进行了热分流。

著录项

  • 作者

    Shamsa, Manu.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号