首页> 外文学位 >Characterizing and controlling extreme optical nonlinearities in photonic crystal fibers.
【24h】

Characterizing and controlling extreme optical nonlinearities in photonic crystal fibers.

机译:表征和控制光子晶体光纤中的极端光学非线性。

获取原文
获取原文并翻译 | 示例

摘要

The development of the photonic crystal fibers (PCFs or microstructured fibers) has been one of the most intellectually exciting events in the optics community within the past few years. The introduction of air-hole structures in PCFs allows for new degrees of freedom to manipulate both the dispersion and optical nonlinearities of the fibers. Not only the zero group-velocity-dispersion of a PCF can be engineered from 500 nm to beyond 1500 nm, but the extremely high optical nonlinearities of PCFs also lead to ultrabroadband supercontinuum generation (>1000 nm) when pumped by nanoJoules femtosecond Ti: Sapphire laser pulses. Therefore, PCF is an ideal system for investigating nonlinear optics.; In this dissertation, we present results of controlling nonlinear optical processes in PCFs by adjusting the input pulse properties and the fiber dispersion. We focus on supercontinuum, resulting from the extreme nonlinear processes. A simulation tool based on the extended nonlinear Schrodinger equation is developed to model our experiments and predict output spectra.; To investigate the impact of input pulse properties on the supercontinuum generation, we perform open- and closed-loop control experiments. Femtosecond pulse shaping is used to change the input pulse properties. In the open-loop (intuitively designed) control experiments, we investigate the effects of input pulse spectral phase on the bandwidth of supercontinuum generation. Furthermore, we use phase-sculpted temporal ramp pulses to suppress the self-steepening nonlinear effect and generate more symmetric supercontinuum spectrum. Using the genetic algorithm in closed-loops (adaptive) control experiment to synthesize the appropriate temporal pulse shape, we enhance the supercontinuum generation bandwidth and perform control of soliton self-frequency shift. For both the open- and closed-loop control, simulation results show good agreement compared with the experiment optimized spectra. To our knowledge, this is the first time that femtosecond pulse shaping has been used to control the pulse nonlinear propagations in PCFs.; We also develop a pulse compression model to study how the microstructured fiber dispersion characteristics can affect the supercontinuum temporal compressions. Using numerically simulated dispersion-flattened microstructured fibers at different wavelengths, simulation results show that it is possible to compensate the stable supercontinuum spectral phase and compress the pulse to the few-cycle regime.
机译:在过去的几年中,光子晶体光纤(PCF或微结构光纤)的发展一直是光学界最激动人心的事件之一。 PCF中引入了气孔结构,从而为控制光纤的色散和光学非线性提供了新的自由度。不仅可以将PCF的零基团速度色散从500 nm设计到超过1500 nm,而且当用nanoJoules飞秒Ti:蓝宝石泵浦时,PCF的极高的光学非线性还会导致产生超宽带超连续谱(> 1000 nm)。激光脉冲。因此,PCF是研究非线性光学的理想系统。本文介绍了通过调节输入脉冲特性和光纤色散来控制PCF非线性光学过程的结果。我们专注于由极端非线性过程产生的超连续谱。开发了基于扩展非线性Schrodinger方程的仿真工具,以对我们的实验进行建模并预测输出光谱。为了研究输入脉冲属性对超连续谱产生的影响,我们进行了开环和闭环控制实验。飞秒脉冲整形用于更改输入脉冲属性。在开环(直观设计)的控制实验中,我们研究了输入脉冲频谱相位对超连续谱产生带宽的影响。此外,我们使用相位雕刻的时间斜坡脉冲来抑制自加陡峭的非线性效应并生成更对称的超连续谱。使用遗传算法在闭环(自适应)控制实验中合成适当的时间脉冲形状,我们提高了超连续谱的产生带宽并执行了孤子自频移的控制。对于开环和闭环控制,与实验优化的光谱相比,仿真结果显示出良好的一致性。据我们所知,这是第一次使用飞秒脉冲整形来控制PCF中的脉冲非线性传播。我们还开发了一个脉冲压缩模型,以研究微结构化纤维色散特性如何影响超连续谱时间压缩。使用数值模拟的在不同波长处色散平坦的微结构化光纤,仿真结果表明,可以补偿稳定的超连续谱光谱相位并将脉冲压缩到少数循环状态。

著录项

  • 作者

    Xu, Shengbo.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号