首页> 外文学位 >Microfabrication of spatially-patterned, polymer scaffolds for applications in stem cell and tissue engineering.
【24h】

Microfabrication of spatially-patterned, polymer scaffolds for applications in stem cell and tissue engineering.

机译:用于干细胞和组织工程的具有空间图案的聚合物支架的微细加工。

获取原文
获取原文并翻译 | 示例

摘要

Tissue engineering is a recently developed field that combines material science, cell biology, and engineering to create or improve functional tissues/organs. The field of tissue engineering has progressed from a fledgling science to an emerging technology, in large part due to parallel advances in the application of biomaterials and understanding stem cell behavior. Current studies have evaluated certain types of natural and synthetic biomaterials for feasibility of replicating the physio-chemical microenvironments of stem cells. Furthermore, technologies derived from micro-machining and solid free-form fabrication industries have utilized these biomaterials to create scaffolds that resemble tissue-like structures.; Recent scaffold fabrication methods have attempted to overcome certain challenges in engineering tissues and organs. One of the fundamental limitations in current tissue engineering efforts has been the inability to develop multiple tissue types (i.e. bone, cartilage, muscles, ligaments) within a single scaffold structure in a pre-designed manner. The differentiation of multiple cells within a three-dimensional (3D) scaffold using a single stem cell population has yet to be developed due to challenges in integrating various biochemical factors in a spatially-patterned method.; This dissertation discusses scaffold micro-fabrication techniques that use layer-by-layer, ultraviolet-based (UV) stereolithography systems. These approaches in micro-fabricating scaffolds provide an optimal, biomimetic environment for the pre-patterned differentiation of mesenchymal stem cells into skeletal-type tissues. We demonstrated both laser-based and digital micromirror device-based stereolithography systems for creating intricate scaffold architectures with multiple bio-factors encapsulated in pre-determined regions. We showed that micro-stereolithography has the powerful capability of building 3D complex scaffolds with specific pore sizes and shapes in a layer-by-layer fashion using photo-crosslinkable monomers. These polymer-based scaffolds were functionalized with specific signaling proteins to create a biomimetic niche in which stem cells can respond, attach, and differentiate. The ultimate goal of this project is to integrate novel concepts of micro-manufacturing along with polymer-controlled release kinetics and stem cell biology to attain pre-designed architectures of tissue structures.
机译:组织工程学是结合材料科学,细胞生物学和工程学来创建或改善功能组织/器官的最近发展的领域。组织工程领域已经从刚刚起步的科学发展到了新兴的技术,这在很大程度上是由于生物材料的应用和对干细胞行为的了解取得了平行进展。当前的研究已经评估了某些类型的天然和合成生物材料在复制干细胞的物理化学微环境方面的可行性。此外,源自微加工和固体自由形式制造工业的技术已经利用这些生物材料来制造类似于组织状结构的支架。最近的脚手架制造方法已尝试克服工程组织和器官中的某些挑战。当前组织工程工作的基本局限性之一是无法以预先设计的方式在单个支架结构内发展多种组织类型(即骨骼,软骨,肌肉,韧带)。由于在空间模式化的方法中整合各种生化因素的挑战,使用单一干细胞群体的三维(3D)支架内的多种细胞的分化尚待开发。本文讨论了使用逐层紫外线基立体光刻系统的脚手架微加工技术。这些在微细制造支架中的方法为间充质干细胞预先模式分化为骨骼型组织提供了最佳的仿生环境。我们演示了基于激光和基于数字微镜设备的立体光刻系统,它们用于创建复杂的支架架构,其中多个生物因子封装在预定区域中。我们表明,微立体光刻技术具有使用光可交联单体以逐层方式构建具有特定孔径和形状的3D复杂支架的强大功能。这些基于聚合物的支架被特定的信号蛋白功能化,以创建仿生生态位,干细胞可以在其中响应,附着和分化。该项目的最终目标是将微制造的新颖概念与聚合物控制释放动力学和干细胞生物学相结合,以实现预先设计的组织结构。

著录项

  • 作者

    Call, Mary Gazell Mapili.;

  • 作者单位

    The University of Texas at Austin.$bDepartment of Biomedical Engineering.;

  • 授予单位 The University of Texas at Austin.$bDepartment of Biomedical Engineering.;
  • 学科 Biology Cell.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号