首页> 外文学位 >On a class of two-dimensional inverse problems: Wavefield-based shape detection and localization and material profile reconstruction.
【24h】

On a class of two-dimensional inverse problems: Wavefield-based shape detection and localization and material profile reconstruction.

机译:关于一类二维逆问题:基于波场的形状检测和定位以及材料轮廓重构。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation we discuss the numerical treatment of two classical inverse problems: firstly, we are interested in the shape detection and localization problem that arises when it is desirable to identify the location and shape of an unknown object embedded in a host medium using response measurements at remote stations. Secondly, we are concerned with the reconstruction of a medium's material profile given, again, scant response data. For both problems we use acoustic (or equivalent) waves, to illuminate the interrogated object/medium; however, the mathematical/numerical treatment presented herein extends directly to other wave types. There is a wide, and ever widening, spectrum of possible applications that stand to benefit: of particular interest here are geotechnical applications that arise during site characterization efforts.; To tackle both inverse problems we adopt the systematic framework of governing-equation-constrained optimization. Accordingly, misfit functionals are augmented with appropriate regularization terms, and with the weak imposition of the equations describing the physics of the wave interrogation. The governing equations may be either of the partial-differential or integral kind, subject only to user preference or problem bias. The framework is flexible enough to accommodate various misfit norms and regularization terms. We seek solutions that minimize the augmented functional by requiring that the first-order optimality conditions vanish at the optimum, thereby giving rise to Karush-Kuhn-Tucker-type systems. We then solve the associated state, adjoint, and control problems with a reduced-space approach.; To alleviate the theoretical and numerical difficulties inherent to all inverse problems that are present here as well, we seek to narrow the solution feasibility space by adopting special schemes. In the shape detection and localization problem we adopt amplitude-based misfit functionals, and a frequency- and directionality-continuation scheme, somewhat akin to multigrid methods, that, thus far, have lend robustness to the inversion process. The mathematical details are based on integral equations, where, in addition, the control problem is cast in the elegant framework of total or material derivatives that allow computational speed-up when compared to finite-difference-based gradient schemes. Similarly, in the material profile reconstruction problem we adopt a time-dependent regularization scheme that exhibits superior performance to classical Tikhonov-type regularizations and is shown to be capable of recovering both sharp and smooth material distributions, while being relatively insensitive to the choice of initial guesses and regularization factors. These schemes constitute particular contributions of this work.; We describe the mathematical framework and report numerical results. Specifically, with respect to the shape detection and localization problem we report on the two-dimensional case of sound-hard objects embedded in full-space; with respect to the material profile reconstruction problem, we report results on the one-dimensional case of horizontally-layered systems, and on the two-dimensional case of finite or infinite-extent domains. We discuss the algorithmic performance in the presence of both noise-free and noisy data and provide recommendations for possible extensions of this work.
机译:在本文中,我们讨论了两个经典逆问题的数值处理:首先,我们对形状检测和定位问题感兴趣,当需要使用响应测量来识别嵌入到宿主介质中的未知物体的位置和形状时,就会出现该问题。在远程站。其次,我们关注的是再一次缺乏响应数据的情况下介质的材料轮廓的重建。对于这两个问题,我们都使用声波(或等效波)来照亮被询问的物体/介质。但是,本文介绍的数学/数值处理方法直接扩展到其他波浪类型。受益的范围很广,而且还在不断扩大:在此特别感兴趣的是在现场定性工作中出现的岩土工程应用。为了解决这两个反问题,我们采用了控制方程约束优化的系统框架。因此,不适当的功能会通过适当的正则化项以及描述波动询问物理原理的等式的弱化而得到增强。控制方程可以是偏微分方程,也可以是整数方程,仅受用户偏爱或问题偏见的影响。该框架具有足够的灵活性,可以容纳各种不合适的规范和正则化术语。我们寻求通过要求一阶最优条件在最优条件下消失来最小化增强功能的解决方案,从而产生Karush-Kuhn-Tucker型系统。然后,我们使用缩小空间的方法解决相关的状态,伴随和控制问题。为了减轻此处也存在的所有反问题固有的理论和数值困难,我们寻求通过采用特殊的方案来缩小解决方案的可行性空间。在形状检测和定位问题中,我们采用了基于幅度的失配函数,以及一种频率和方向性连续方案,该方案与多网格方法类似,到目前为止,该方案对反演过程具有鲁棒性。数学细节基于积分方程,此外,与基于有限差分的梯度方案相比,控制问题还存在于优美的总体或材料导数框架中,从而可以加快计算速度。同样,在材料轮廓重构问题中,我们采用了与时间有关的正则化方案,该方案具有优于经典Tikhonov型正则化的性能,并且能够恢复锐利和平滑的材料分布,同时对初始选择相对不敏感。猜测和正则化因素。这些计划是这项工作的特殊贡献。我们描述数学框架并报告数值结果。具体来说,关于形状检测和定位问题,我们报告了嵌入全空间的硬质物体的二维情况。关于材料轮廓重建问题,我们报告了水平层系统的一维情况以及有限或无限范围的二维情况的结果。我们讨论了在无噪声和有噪声数据的情况下的算法性能,并为这项工作的可能扩展提供了建议。

著录项

  • 作者

    Na, Seong-Won.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号