首页> 外文学位 >Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques.
【24h】

Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques.

机译:研究固体氧化物燃料电池的互连,保护涂层和先进的物理气相沉积技术。

获取原文
获取原文并翻译 | 示例

摘要

High energy conversion efficiency, decreased environmentally-sensitive emissions and fuel flexibility have attracted increasing attention toward solid oxide fuel cell (SOFC) systems for stationary, transportation and portable power generation. Critical durability and cost issues, however, continue to impede wide-spread deployment. Many intermediate temperature (600-800°C) planar SOFC systems employ metallic alloy interconnect components, which physically connect individual fuel cells into electric series, facilitate gas distribution to appropriate SOFC electrode chambers (fuel/anode and oxidant[air]/cathode) and provide SOFC stack mechanical support. These demanding multifunctional requirements challenge commercially-available and inexpensive metallic alloys due to corrosion and related effects.; Many ongoing investigations are aimed at enabling inexpensive metallic alloys (via bulk and/or surface modifications) as SOFC interconnects (SOFC(IC)s). In this study, two advanced physical vapor deposition (PVD) techniques: large area filtered vacuum arc deposition (LAFAD), and filtered arc plasma-assisted electron beam PVD (FA-EBPVD) were used to deposit a wide-variety of protective nanocomposite (amorphous/nanocrystalline) ceramic thin-film (5microm) coatings on commercial and specialty stainless steels with different surface finishes. Both bare and coated steel specimens were subjected to SOFC(IC)-relevant exposures and evaluated using complimentary surface analysis techniques.; Significant improvements were observed under simulated SOFC(IC) exposures with many coated specimens at ∼800°C relative to uncoated specimens: stable surface morphology; low area specific resistance (ASR 100mO·cm 2 >1,000 hours); and, dramatically reduced Cr volatility (>30-fold). Analyses and discussions of SOFC(IC) corrosion, advanced PVD processes and protective coating behavior are intended to advance understanding and accelerate the development of durable and commercially-viable SOFC systems.
机译:能源转换效率高,对环境敏感的排放降低以及燃料的灵活性已引起越来越多的关注,用于固定,运输和便携式发电的固体氧化物燃料电池(SOFC)系统。但是,严重的耐用性和成本问题继续阻碍广泛的部署。许多中间温度(600-800°C)的平面SOFC系统采用金属合金互连组件,这些组件将各个燃料电池物理连接成电串联,有助于将气体分配到合适的SOFC电极室(燃料/阳极和氧化剂[空气] /阴极),并且提供SOFC堆栈机械支持。由于腐蚀和相关作用,这些苛刻的多功能要求挑战了市售和廉价的金属合金。许多正在进行的研究旨在使廉价的金属合金(通过本体和/或表面改性)成为SOFC互连(SOFC(IC)s)。在这项研究中,两种先进的物理气相沉积(PVD)技术:大面积过滤真空电弧沉积(LAFAD)和过滤电弧等离子体辅助电子束PVD(FA-EBPVD)用于沉积多种保护性纳米复合材料(在具有不同表面光洁度的商用和特种不锈钢上的非晶/纳米晶)陶瓷薄膜(<5微米)涂层。裸露的和涂层的钢样品都经受了SOFC(IC)相关的暴露,并使用互补的表面分析技术进行了评估。相对于未涂覆的样品,在约800°C的模拟SOFC(IC)暴露下,许多涂覆的样品相对于未涂覆的样品具有显着改善:低面积电阻率(ASR <100mO·cm 2> 1,000小时);并大大降低了铬的挥发性(> 30倍)。对SOFC(IC)腐蚀,先进的PVD工艺和保护性涂层行为的分析和讨论旨在加深了解并加速耐用和商业上可行的SOFC系统的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号