首页> 外文学位 >Iterative methods for singular linear equations and least-squares problems.
【24h】

Iterative methods for singular linear equations and least-squares problems.

机译:奇异线性方程和最小二乘问题的迭代方法。

获取原文
获取原文并翻译 | 示例

摘要

CG, MINRES, and SYMMLQ are Krylov subspace methods for solving large symmetric systems of linear equations. CG (the conjugate-gradient method) is reliable on positive-definite systems, while MINRES and SYMMLQ are designed for indefinite systems. When these methods are applied to an inconsistent system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length solution (often called the pseudoinverse solution). This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems.; MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). Our algorithm uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form), and so we call it MINRES-QLP. On singular or nonsingular systems, MINRES-QLP can give more accurate solutions than MINRES or SYMMLQ. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm and condition number.; For a singular matrix of arbitrary shape, we observe that null vectors can be obtained by solving least-squares problems involving the transpose of the matrix. For sparse rectangular matrices, this suggests an application of the iterative solver LSQR. In the square case, MINRES, MINRES-QLP, or LSQR are applicable. Results are given for solving homogeneous systems, computing the stationary probability vector for Markov Chain models, and finding null vectors for sparse systems arising in helioseismology.
机译:CG,MINRES和SYMMLQ是用于求解线性方程组大型对称系统的Krylov子空间方法。 CG(共轭梯度法)在正定系统上是可靠的,而MINRES和SYMMLQ是为不确定系统设计的。当这些方法应用于不一致的系统时(即奇异对称最小二乘问题),CG可能会崩溃,SYMMLQ的解可能会爆炸,而MINRES会给出最小二乘解,但不一定是最小长度解(通常称为伪逆解)。这种理解促使我们设计一种类似于MINRES的算法来计算奇异对称系统的最小长度解。 MINRES使用Lanczos过程(其中R为上三对角线)的三对角矩阵的QR因子。我们的算法使用QLP分解(右侧的旋转将R减小为较低的对角线形式),因此我们将其称为MINRES-QLP。在单个或非单个系统上,MINRES-QLP可以提供比MINRES或SYMMLQ更准确的解决方案。我们得出预处理的MINRES-QLP,新的停止规则,以及对解和残差范数,矩阵范数和条件数的更好估计。对于任意形状的奇异矩阵,我们观察到可以通过解决涉及矩阵转置的最小二乘问题来获得零向量。对于稀疏矩形矩阵,这建议使用迭代求解器LSQR。在平方情况下,可以使用MINRES,MINRES-QLP或LSQR。给出了求解齐次系统,计算马尔可夫链模型的平稳概率向量以及发现稀疏系统中流变学的零向量的结果。

著录项

  • 作者

    Choi, Sou-Cheng (Terrya).;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Mathematics.; Engineering General.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;工程基础科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号