首页> 外文学位 >Development of micro built-in calibration pressure sensors with piezoelectric energy harvesters.
【24h】

Development of micro built-in calibration pressure sensors with piezoelectric energy harvesters.

机译:开发带有压电能量收集器的微型内置校准压力传感器。

获取原文
获取原文并翻译 | 示例

摘要

It is a compelling concept that energy harvesting devices will increasingly enhance or even replace batteries for lower-power applications as low-power circuit design techniques and transducer energy efficiencies improve. Piezoelectric materials are promising candidates to make such devices, owing to their natural electromechanical coupling. A piezoelectric energy harvester usually consists of three major components: (1) a piezoelectric harvesting structure for generating electrical energies from ambient energy source, such as ambient acoustics/vibrations, (2) an energy storage device, typically an electrochemical battery, and (3) a modulating circuit that converts the generated AC current into a DC current for charging the battery efficiently.; We model piezoelectric energy harvesters as elecrro-mechanically coupled systems. The analysis indicates that the performance of the harvesters, measured by the power densities can be optimized by altering the mechanical structure configurations, modifying the structure geometries, or optimizing the electric circuits. The numerical results show that: (1) Being a harvesting structure, the piezoelectric bimorph with a concentrated mass attached at one end vibrating in the flexural mode is more efficient than a piezoelectric plate oscillating in the thickness-stretch mode due to a relatively low resonance frequency and high average strain of the bimorph for a given force input; (2) The power density increases dramatically if the structure geometry is chosen by satisfying that the first natural frequency of the harvesting structure matches that of the ambient acoustic vibration; (3) Introducing a switching inductor in parallel with the piezoelectric bimorph called synchronized switch harvesting inductor (SSHI) will significantly increase the power density. The efficiency of change depends on the external excitation lever. (4) An optimized electrical circuit using a step-down dc-dc converter can also increase the power density a lot.; Later, we design a wireless micro pressure sensor of Built-in calibration, with the commercially available MEMS fabrication technology for mass production and low unit cost. The design will enable in-situ calibration over a wireless network and with power being provided by a piezoelectric energy-harvesting device. The built-in automated-calibration and self-power can remove the manual procedures in the traditional calibration, and thus reduce or eliminate the maintenance cost.
机译:一个令人信服的概念是,随着低功率电路设计技术和传感器能量效率的提高,能量收集设备将越来越多地增强或替代低功率应用的电池。压电材料由于其自然的机电耦合而成为制造此类器件的有希望的候选者。压电能量收集器通常由三个主要组件组成:(1)压电收集结构,用于从环境能量源(例如环境声学/振动)中产生电能;(2)能量存储设备,通常是电化学电池,以及(3) )调制电路,将产生的交流电流转换为直流电流,以有效地为电池充电。我们将压电能量收集器建模为机电耦合系统。分析表明,通过改变机械结构配置,修改结构几何形状或优化电路,可以优化以功率密度衡量的收割机性能。数值结果表明:(1)作为一种收割结构,其一端附着有集中质量的压电双压电晶片以挠曲模式振动,比以厚度拉伸模式振动的压电板由于共振较低而效率更高。对于给定的力输入,双压电晶片的频率和高平均应变; (2)如果通过满足收割结构的第一固有频率与环境声振动的第一固有频率匹配来选择结构的几何形状,则功率密度会急剧增加; (3)引入与压电双压电晶片并联的开关电感器,称为同步开关收集电感器(SSHI),将大大提高功率密度。变化的效率取决于外部激励杆。 (4)使用降压DC-DC转换器的优化电路也可以大大提高功率密度。之后,我们使用内置的MEMS制造技术设计了内置校准的无线微压力传感器,以实现批量生产和低单位成本。该设计将允许通过无线网络进行现场校准,并通过压电能量收集设备提供电源。内置的自动校准和自供电功能可以消除传统校准中的手动步骤,从而减少或消除维护成本。

著录项

  • 作者

    Hu, Ting.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号