首页> 外文学位 >Direct numerical simulations and modeling of jets in crossflow.
【24h】

Direct numerical simulations and modeling of jets in crossflow.

机译:横流中射流的直接数值模拟和建模。

获取原文
获取原文并翻译 | 示例

摘要

Jets in crossflow are central to a variety of applications such as fuel injection, gas turbine combustion and film-cooling. Direct Numerical Simulations are used to study the different aspects of round jets in a crossflow. The first problem studies the effect of jet and crossflow velocity profiles on jet trajectories and the near-field. A new scaling law for the jet trajectory is proposed, that accounts for these parameters. The proposed scaling is shown to be a significant improvement over current scaling laws.; DNS of a turbulent jet in crossflow is performed at conditions corresponding to an experiment (Su & Mungal 2004). Detailed comparison shows good agreement with experiment, and additional quantities, not available experimentally, are presented. Turbulent kinetic energy budget is computed, and is used to suggest possible reasons for the difficulty experienced by current engineering models in predicting this complex flow.; A predictor-corrector approach is implemented to compute passive scalar transport. This ensures that the local scalar concentration is always within bounds. The passive scalar is introduced along with the jet fluid, once the velocity field is statistically stationary. Mean scalar profiles show a good agreement when compared to the experiment. The scalar field is used to compute entrainment of the crossflow fluid by the jet, which is greater than that in a regular jet. The reasons for a transverse jet's enhanced entrainment are explained in terms of the pressure field in the vicinity of the jet.; A two-dimensional model problem is used to study jet cross-section deformation. The model jet deforms at its trailing edge, exhibits the Kelvin-Helmholtz instability at its outer edges, and---later---yields a counter-rotating vortex pair (CVP). The model jet experiences constant acceleration in its initial stages, and moves at constant velocity at longer times. Deformation of the jet cross-section may be explained in terms of the pressure field that the crossflow fluid imposes on the jet, and the acceleration that the jet experiences. It is shown that the CVP is formed even in two dimensions, and that the pipe is not necessary.
机译:错流的射流对于多种应用至关重要,例如燃料喷射,燃气轮机燃烧和薄膜冷却。直接数值模拟用于研究横流中圆形射流的不同方面。第一个问题研究射流和横流速度分布对射流轨迹和近场的影响。提出了一种新的喷射轨迹定标定律,该定律考虑了这些参数。事实证明,建议的缩放比例是对当前缩放比例定律的重大改进。横流中湍流射流的DNS在与实验相对应的条件下执行(Su&Mungal 2004)。详细的比较表明与实验具有很好的一致性,并提出了实验无法获得的其他数量。计算了湍流动能收支,并用于说明当前工程模型在预测这种复杂流时遇到的困难的可能原因。实现了预测器-校正器方法以计算无源标量传输。这样可以确保局部标量浓度始终在范围内。一旦速度场统计稳定,就将被动标量与喷射流体一起引入。与实验相比,平均标量轮廓显示出良好的一致性。标量场用于计算射流对错流流体的夹带,该夹带大于常规射流中的夹带。横向射流夹带增加的原因是根据射流附近的压力场来解释的。二维模型问题用于研究射流横截面变形。模型射流在其后缘变形,在其外缘表现出Kelvin-Helmholtz不稳定性,并且-以后-产生反向旋转的涡流对(CVP)。模型射流在其初始阶段经历恒定的加速度,并在更长的时间内以恒定的速度运动。射流横截面的变形可以用横流流体施加在射流上的压力场以及射流经历的加速度来解释。可以看出,CVP甚至可以在二维上形成,并且不需要管道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号