首页> 外文学位 >Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata.
【24h】

Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata.

机译:钣金结构的拓扑优化,用于使用混合细胞自动机进行防​​撞设计。

获取原文
获取原文并翻译 | 示例

摘要

The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety regulations. Design for prescribed FD response by minimizing the error between the actual response and desired FD curve is implemented. With the use of HCA rules, manufacturability constraints (e.g., rolling) and structures which can be manufactured by special techniques, such as, tailor-welded blanks (TWB), have also been implemented. This methodology is applied to shock-absorbing structural components for passengers in a crashing vehicle. These results are compared to previous designs showing the benefits of the method introduced in this work.
机译:耐撞性设计的目的是产生可塑性变形的能量吸收结构,该结构可以满足规定的力-位移(FD)响应。 FD行为决定了结构应承受的反作用力,位移和内部能量。但是,仍很少尝试将此要求包括在结构优化问题中。由于与动态/冲击负载相关的复杂性,现有的商业优化工具在静态负载条件下利用模型。由于碰撞事件的复杂性以及对结构的动力响应进行数值分析所需的时间,因此无法很好地开发经典方法(即基于梯度的方法和直接方法)来解决这一问题。这项工作提出了一种在混合细胞自动机(HCA)方法框架下解决上述挑战的方法。 HCA方法已成功应用于非线性瞬态拓扑优化,以实现耐撞性设计。在这项工作中,HCA算法已被用于开发一种有效的方法,用于使用拓扑优化在动态载荷事件下合成具有最佳材料厚度分布的基于壳体的钣金结构。该方法利用细胞自动机(CA)计算范例和通过ls-dyna进行的非线性瞬态有限元分析(FEA)。在这种方法中,通过改变一组方便的设计变量(例如厚度)将一组场变量驱动到它们的目标状态。这些规则在仅了解局部条件的晶格内的单元中局部运行。与单元关联的字段变量被驱动到设定点以获得所需的结构。该方法用于设计具有指定屈曲区域的受控能量吸收的结构。根据乘客安全法规,峰值反作用力和最大位移也受到限制,以满足所需的安全级别。通过最小化实际响应和所需FD曲线之间的误差来实现规定的FD响应的设计。通过使用HCA规则,还实现了可制造性约束(例如,轧制)和可以通过特殊技术制造的结构,例如拼焊板(TWB)。该方法应用于碰撞车辆中的乘客的减震结构部件。将这些结果与以前的设计进行比较,以显示此工作中引入的方法的好处。

著录项

  • 作者

    Mozumder, Chandan K.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号