首页> 外文学位 >Methods for analysis of passenger trip performance in a complex networked transportation system.
【24h】

Methods for analysis of passenger trip performance in a complex networked transportation system.

机译:在复杂的网络运输系统中分析旅客出行绩效的方法。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of the Air Transportation System (ATS) is to provide safe and efficient transportation service of passengers and cargo. The on-time performance of a passenger's trip is a critical performance measurement of the Quality of Service (QOS) provided by any Air Transportation System. QOS has been correlated with airline profitability, productivity, customer loyalty and customer satisfaction (Heskett et al. 1994).; Btatu and Barnhart have shown that official government and airline on-time performance metrics (i.e. flight-centric measures of air transportation) fail to accurately reflect the passenger experience (Btatu and Barnhart, 2005). Flight-based metrics do not include the trip delays accrued by passengers who were re-booked due to cancelled flights or missed connections. Also, flight-based metrics do not quantify the magnitude of the delay (only the likelihood) and thus fails to provide the consumer with a useful assessment of the impact of a delay. Passenger-centric metrics have not been developed because of the unavailability of airline proprietary data, which is also protected by anti-trust collusion concerns and civil liberty privacy restrictions. Moveover, the growth of the ATS is trending out of the historical range.; The objectives of this research were to (1) estimate ATS-wide passenger trip delay using publicly accessible flight data, and (2) investigate passenger trip dynamics out of the range of historical data by building a passenger flow simulation model to predict impact on passenger trip time given anticipated changes in the future. The first objective enables researchers to conduct historical analysis on passenger on-time performance without proprietary itinerary data, and the second objective enables researchers to conduct experiments outside the range of historic data.; The estimated passenger trip delay was for 1,030 routes between the 35 busiest airports in the United States in 2006. The major findings of this research are listed as follows:; 1. High passenger trip delays are disproportionately generated by cancelled flights and missed connections. Passengers scheduled on cancelled flights or missed connections represent 3 percent of total enplanements, but generated 45 percent of total passenger trip delay. On average, passengers scheduled on cancelled flights experienced 607 minutes delay, and passengers who missed the connections experienced 341 minutes delay in 2006. The heavily skewed distribution of passenger trip delay reveals the fact that a small proportion of passengers experience heavy delays, which can not be reflected by flight-based performance metrics.; 2. Trend analysis for passenger trip delays from 2000 to 2006 shows the increase in flight operations slowed down and leveled off in 2006, while enplanements kept increasing. This is due to the continuous increase in load factor. Load factor has increased from 69% in 2003 to 80% in 2006. Passenger performance is very sensitive to changes in flight operations: annual total passenger trip delay was increased by 17% and 7% from 2004 to 2005, and from 2005 to 2006, while flight operations barely increased (0.5% from 2004 to 2005, and no increase from 2005 to 2006) during the same time period.; 3. Passenger trip delay is shown to have an asymmetric performance of passenger trip delay in terms of routes. Seventeen percent of the 1030 routes generated 50 percent of total passenger trip delays. An interesting observation is that routes between the New York metropolitan area and the Washington D.C. metropolitan area have the highest average passenger trip delays in the system.; 4. In terms of airports, there is also an asymmetric performance of passenger trip delay. Nine of the 35 busiest airports generated 50 percent of total passenger trip delays. Some airports, especially major hubs, impact the passenger trip delays significantly more than others. Recognition of this asymmetric performance can help reduce the total passenger trip delay pr
机译:航空运输系统(ATS)的目的是为旅客和货物提供安全有效的运输服务。旅客出行的准时性能是衡量任何航空运输系统提供的服务质量(QOS)的关键性能。 QOS与航空公司的盈利能力,生产率,客户忠诚度和客户满意度相关(Heskett等,1994)。 Btatu和Barnhart已表明官方政府和航空公司的准时绩效指标(即以飞行为中心的航空运输量度)未能准确反映出乘客的体验(Btatu and Barnhart,2005)。基于航班的指标不包括由于航班取消或错位而被重新预订的乘客所造成的旅行延误。而且,基于航班的度量标准无法量化延迟的幅度(仅是可能性),因此无法为消费者提供延迟影响的有用评估。由于无法获得航空公司专有数据,因此尚未开发以乘客为中心的指标,而该数据也受到反托拉斯合谋问题和公民自由隐私限制的保护。此外,ATS的增长趋势超出了历史范围。这项研究的目的是(1)使用可公开获取的航班数据估算ATS范围内的旅客旅行延误,以及(2)通过建立旅客流量模拟模型来预测对旅客的影响来调查历史数据范围之外的旅客旅行动态考虑到未来的预期变化,行程时间。第一个目标使研究人员能够在没有专有行程数据的情况下对乘客的按时表现进行历史分析,第二个目标使研究人员能够在历史数据范围之外进行实验。估计2006年美国35个最繁忙的机场之间的1,030条航线的旅客旅行延误。本研究的主要发现如下: 1.航班取消和错位造成的乘客延误过多。安排取消航班或错过联系的乘客占飞机总数的3%,但占旅客旅行延误的45%。平均而言,按取消航班安排的旅客在2006年经历了607分钟的延误,而错过转机的旅客在2006年经历了341分钟的延误。旅客旅行延误的严重偏斜分布表明,一小部分旅客经历了严重的延误,这不能由基于航班的绩效指标反映出来; 2.对2000年至2006年旅客旅行延误的趋势分析表明,在2006年,飞机飞行的增长速度减慢并趋于平稳,而客运量却在不断增加。这是由于负载系数的持续增加。载客率从2003年的69%增加到2006年的80%。旅客的表现对航班运营的变化非常敏感:从2004年到2005年以及从2005年到2006年,每年的总旅客旅行延误分别增加了17%和7%,而同期的航班运营量几乎没有增长(2004年至2005年为0.5%,2005年至2006年没有增长)。 3.根据路线,旅客旅行延误被证明具有不对称的旅客旅行延误性能。 1030条路线中有17%产生了总旅客旅行延误的50%。有趣的发现是,纽约大都市区和华盛顿特区大都市区之间的路线在系统中的平均旅客旅行延误最高。 4.就机场而言,旅客旅行延误也有不对称的表现。在35个最繁忙的机场中,有9个产生了旅客旅行延误总数的50%。一些机场,尤其是主要枢纽,对旅客出行延误的影响远大于其他机场。认识到这种不对称性能可以帮助减少乘客的总旅行延误

著录项

  • 作者

    Wang, Danyi.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Engineering Aerospace.; Engineering System Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 276 p.
  • 总页数 276
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;系统科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号